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Let g,(r) and g,(¢) be two positive, strictly convex and continuously differentiable
functions on an interval (g, ) (—oo <a<b< o), and let {L,} be a sequence of
linear positive operators, each with domain containing 1, , g,(¢), and g,(¢). If
L.(f, x) converges to f(x) uniformly on a compact subset of (a, #) for the test
functions f(£)=1, 1, g.(¢), g,(t), then so does every feC(a, b} satisfying
f(1)=0(g. (1)) (¢t —=a*)and f(1)=0(g,(2)) (1t > b~ ). We estimate the convergence
rate of L,f in terms of the rates for the test functions and the moduli of continuity
of fand f'.  © 1989 Academic Press, Inc.

1. INTRODUCTION

The well-known Bohman-Korovkin theorem [1,6] states that the
(arbitrarily close uniform) approximation of all continuous real functions
on [a, b] by a sequence of positive linear operators is guaranteed by such
an approximation for the three test functions: 1, ¢, and > Various exten-
sion of this theorem to unbounded functions and quantitative results have
been published in many papers. In particular, we cite works of Ditzian [3],
Eisenberg and Wood [4], Ismail and May [6], Mamedov [8], Miiller and
Walk [10], Schurer [11], Sikkema [16], Swetits and Wood [17], and
Walk [18]. In [12] the first author gives a version in which a strictly
convex, continuously differentiable function g(¢) is used to replace #* as the
third test function in order to approximate functions of the order of g(¢) as
[t]| - oo. It was subsequently applied in [12, 13, 14] to obtain many
representation formulas for operator semigroups and cosine functions.

The purpose of this paper is to study the approximation of functions
which may be unboundedly defined in a bounded set. Let g, and g, be two
positive, strictly convex, and continuously differentiable functions on a
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finite or infinite open interval /=(a, ) in R, and let {L,} be a sequence
of positive linear operators on the space C(I,, g,, 85) of functions which are
majorized near ¢ and b by g, and g,, respectively, and are continuous
on an interval I,:=[a,,b,]Jcl In Section 2, we shall establish
a Bohman-Korovkin type approximation theorem for functions in
C(I,, 2., g,) and a theorem presenting some quantitative estimates of the
approximation.

Theorem 2.1 asserts that L, f is pointwise (uniformly) convergent to f on
I, for all fin C(1,, g,, &) if and only if it is so for the test functions: 1, ¢,
g.(1), g,(¢). In case (a, b)=(—o0, o0) and g,=g,, this theorem is a special
case of Theorem 2.2 of [12], in which functions on R™ have been treated.
It is perhaps worth mentioning that, compared with other known results,
the assumption: L,(t% x)— x* is not necessary in Theorem 2.1. For
instance, if L,f— f for f(t)=1, t, |t|*? then by Theorem 2.1 it holds also
for all f of the order of |¢|*? as ¢ — o, but, without the above assumption,
theorems in [10, 18] could not be applied to.

Using the technique found in Shisha and Mond [15], DeVore [2],
Ditzian [3], and Gonska [5], we obtain in Theorem 2.2 quantitative
estimates for the convergence rate of L,f in terms of the rates for test
functions 1, ¢, 1%, g,(t), s=a, b, and the moduli of continuity of f and f'.

In Section 3, applications to some well-known positive linear operators
will be made. In some cases, slight modifications are made so that the
operators can be applied to the desired functions.

2. THE APPROXIMATION THEOREMS

Let I=(a, b) (—o0 <a<b< o) be the interval on which the functions
to be approximated are defined, and let I, = [a,, b,] be contained in I. Let
g4(1), g,(t) be given functions which are positive, strictly convex on I,
continuously differentiable on I,, and satisfy g,(¢) = O(g,(¢)) (t - a™*) and
g.()=0(g,()) (t—>b7). If a= —0 [resp., b=o0], we further assume
that

dim g, (1)/]t] = o0 [resrx, lim g,(2)/|1] = 00]- (1)

For example, when I=(0, ), g,(t) can be (1+0)" ', ¢ (p>1), t7°
exp(wt %) (e, w>0), and g,(¢) can be °, exp(wt’) (p>1, w>0).
Obviously, g,(¢) and g,(¢) are continuous on I, and the functions

hy(x, 1) =g, (1) = [gx) + g(x)(1=x)]  (s=a,b) (2)

are positive for x# ¢ and are continuous in (x, ¢} on I, xI. The strict
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convexity of g,(¢) also implies A(x,¢;)<h,x, t,) whenever 1,<t,<x
or t,>t;=2x (xel;), and hx,,t)<hyx,,t) whenever x,<x,<t or
X,>x 2t (x,x,el;). It follows that A(x,,t,)<h,(x,,1,) whenever
LESHEX X, O XL <X <Kt (x4, x,€];). This property will be
needed in the proofs of our theorems.

We shall denote by C(7,, g, g,) the set of those functions f(¢) on I with
the properties: (i) f(¢) is bounded on every compact subset of I; (ii) f(¢) is
continuous at every point of I;; (ui) f(1)=0(g.(?)) (t—a*) and
f(t)=0(g,(t)) (t—=b7). The functions 1, ¢, g,(¢), and g,(¢) are already
contained in C(I,, g,, g,). For a positive linear operator L to operate on
C(l,, g4, ), we require that L(g,; x) < oo and L(g,; x) <o for all xel,.

For positive linear operators L, on C(I,, g,, b,), a(x) and B2(x) will
denote the functions L,(h,(x, {); x) and L,(h,(x, t); x), respectively, and
92(x) will denote L,((z— x)?; x) whenever it is defined. If we write L (¢"; x)
X'+ A, (x) (i=0,1,2) and L,(g,; x) = g(x) + pn(x) (s=a, b), then

Ap(X) = tg(X) = £u(X) Lno(X) — 82(X) A1 (X) + g1(xX) XA,0(X), (3)
Ba(x) = tap(X) — 86(X) Ano(X) — g3(5) Ay (x) + g5(X) XA n0(x), 4)
Pa(x) = Aa(X) = 2y (%) + X% Zo(X). (5)
For a fixed xel,,a2(x) -0 and B2(x)—>0 when L, (t;x)—-x" (i=0,1)

and L,(g,;x) > g,(x) (s=a,b); y3(x) >0 when L,(t;x)>x' (i=0,1,2).
The assertions hold for uniform convergence on I, too.

THEOREM 2.1. Let {L,} be a sequence of positive linear operators on
C(1y, 84, 85)- If L(tx) > x' (i=0,1) and L,(g,;x) - g,(x) (s=a,b) for
some xel, (resp. uniformly for all xecl,), then for any f in
C(1,, 84, 85), L (f; x) converges to f(x) at x (resp. uniformly on I,).

Lemma. If fe C(1y, g,,8s) and if 0< 6 <min{a, —a, b—b,}, then there
is a constani M(f, I,, 8) such that

() =S SM(f 1y, 8)[h,(x, 1) + hy(x, 1)] (6)

for all xe I, and te I with |t — x| 2 0.

Proof. First, we suppose lim,_, ,+ g (t)=o0. Since f, g,,and g, are
continuous on the compact set 7, they are bounded there by a number
k> 0. Hence we have

AO=f ek f, k L
hx, 1)~ gl gt)  ga?)

for all xel, and for ¢ sufficiently close to a. Now the assumptions:
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f(£)=0(g,(1)) (t—>a*)and (1) (in case a= —oo) imply the existence of a
M, >0 and a point a’ € (a, a; — ) such that

@) =f()<Mh(x, 1) (xel,te(a,a’]) (7)

Next, suppose lim, _, ,+ g,(¢) < c. Then f{r) is bounded on (a, b,], and (7)
still holds with M, =2 sup{|f(?)|; te(a, b,]}/h.(a,, a, — ). Here we note
that for xel, and te(a, a'], h(x,t)=ha,,a)>h(a,a,—8)>0 as
remarked before.

Similarly, there exist M, >0 and &' € (b, + J, b) such that

f(O)=f()<Mh(x, 1) (xely, ted, b)) (8)

Finally, since 4,(x, 1) is positive and continuous on the compact set
{(x,1);xel,te[a’,b'], |x—t| =4}, it assumes a positive minimum m.
Hence we have for (x, ¢) in this set,

Lf()=f ()| < (2/m) sup{|f(t)|; te [a, b']} holx, 1) = M3h,(x, 1). (9)
Combining (7), (8), and (9), we obtain (6) with M(f, I,,0)=
M, +M,+M,.

Proof of Theorem 2.1. It follows from the lemma that
S =) <@(f, 1, 0) + M(f 1, 8)[h(x, 1) + hy(x, 1)]

for all xel, and tel, where w(f, I;,d)=sup{|f(x)—f(?)|; xel,, tel,
|x—1<d}. w(f; I, 0) tends to O with § because f is continuous at every
point of I,. Hence, on applying L,, we have

[L,(f; X) = <) IL(1; %) = 1] + (£, 1y, 6) L,(1; x)
+M(f,1,, 0)[ai(x) + Ba(x)],
and the proof is complete.
With regard to the convergence rate, we give some estimates in the

following

THEOREM 2.2. Let ¢ be a positive number. Let I,=[a,, b,] and n>0 be
such that [a,—n, b,+n]c1,=[a,, b,], and let L, (t*; x) be defined.

If f belongs to C(1,, g, g,), then there exists a constant K(f, I,, ) such
that for every x€ I,

IL(f; %) =L S f La(1; %) = 1 + @(fi 1, epu(x))[Lo(L; x) + 2]
+K(f, L, mLaz(x) + Bo(x) ). (10)

640/57/3-4
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If, in addition, f’ is continuous on I, then

ILa(f; X) —f () <1 f G L1 x) = 1) + K(f, Iy, m)(oa(x) + Br(x)]
+ IS O La(lt = x[; x) + o(f" I, €7, (X)L (11— x]; x) + (2¢) 7 'y,(x) ]
(11)
SIFE L1 %) = 1) + K(£, 1, m)[oq(x) + B2(x)]
7S COILA(L; x)) 2 + o(f, Iy, era(x)L(La(L; X))+ (2¢) 711}
(12)

and

\L(f; X) = < LFO LWL x) — 1) + K(f, I, m)[o(x) + B(x)]
+ 17 Ll =15 %) + o(f', I, DLt = x|3 %) + (2¢) " 'ya(x)] (13)
SIfON La(15 x) = 1 + K(f, L, m)[ag(x) + Br(x)]
+ 2O (LX) + o(f, Iy, LLAL %))+ (2) 7 'y,(x) 1}
(14)

Remark. 1f we substitute the ¢ in (13) and (14) by cy,(x), then these
two estimates will become (11) and (12) with |f'(x)| replaced by | f'|l. We
shall use different techniques to derive these two pairs of estimates.

Proof. First, we let f(t), I,, and n play the respective roles of
f(tY—f(x), I,, and é in the previous lemma. Then the same argument will
provide two constants Kj, K3, and two points a'€(a,a,—#n) and
b' € (b, + 1, b) such that

(I <Kih(x, 1) (xel,, te(a d’])
LDl < Kshp(x, 1) (xely, te[b',D)).

Next, for xel,, te[a’, a,—n], we have

|f(O <sup{lf(2)l; te [, ay—n1}(hu(as, ay—m)) " hy(x, 1) = K{h,(x, t)

(recall the remark on h,(x, t)). It follows that for xe I, and € (a, a, —n]
we have

[f(2)] <max{K, K} h,(x, t)
and

LSON NS N5 holx, D)/halaz, a —n) = K hu(x, 1).
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Similarly, the following two estimates hold for xe I,, te [b,+#, b):
|f(1)] <max{K3, K5} hy(x, 1),

| SO < N 2, ho(x, 8)/hp(by, by + 1) = K hp(x, t).
Combining these estimates we have for xe€l, and tel—[a,—1n, b, + 1],
() —FN <O+ CN KK, Ly n)Tha(x, 1) + ho(x, 1)1, (15)

where K(f, I,, n) =max{K,, K, } + max{K}, K{, K5, K
For fixed xel,, any te[a,—n, b, +n], and 6 >0 we have, as in [15]
(with o(-)=w(f, I, -)),

S =) So(lt=x) < (1 + (1= x)* 6% 0(d). (16)
If, in addition, f" € C(I,), then, as in [19],

L) =fON < L ()= x)| +

[ 17 1) d

SIS =X+

_f,(1+|u—x[ 5~ olf', I,, 6) dul.

(17)

Combining (15) and (16) we can deduce for all  in I,
Lf() =S < (1 + (2= x)?07%) 0(8) + K(f, Ly, m)[ha(x, 1) + hy(x, )],

from which (10) follows easily, by applying L, and then letting é | cy,(x)
(c.f. Mond [9]). The estimate in (11) and (12) is derived in the same way,
using (17) instead of (16) and using the fact that L, (jz—x|;x)<
Pu(X) P(La(15 X)) 2.

For the proof of (13) and (14) we shall use the technique in [5]. Let f
be in C(I,, g,, g,) and continuously differentiable on 7,. We define

f'(a) forx<a,,
fx)=<f(x) fora,<x<b,,
f'(b) for x>b,,

and
k(x):(zc)*lj fix+s)ds  forxel,=[ay,b,].
Then ke C'(1,) and we have for x eI, that |k(x)| < | f|l, and

lk'(x) =12e) " [/ (x+ ) =F'(x~e)]|
SIS ) =S R+ (x) = (x=o)l]

SC Cl)(f,Il,C).
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There exists a 8, e [ —c, ¢] such that k(x)=/f"(x+6,) and so

I(f = k) =11 () =S (x+8) <o(f, I, c).

Thus, if we choose a g in C*(I;) such that g’ =k, then

gl < s 18" < e olf, 1y, ¢)

and
I/ =gVl <wlf, 1y, ¢).
Now for xel, and te[a,—1n, b, +1],

SO =)< I(f—8)0)— (f—g)(x) + |g(t) — g(x)|

=1/~ @)+ | g (1) + 5 (-

< LI 8) 1+ g1l —xl +3 g~ x)°
<[ 1 )+ 11T 1= x| 450 1y )t =)

Combining this and (15) we obtain that for xel, and te]
L) =fON <K, L, m)[ha(x, 1) + hy(x, )]+ Lo(f', I, o) + 1111311 — x|

1
+2_Cw(f,, Ils C)(t_x)z’

from which (13) and (14) follow immediately by applying L,.

Remark. Under the assumption that L,f—f for f(1)=1, ¢, 1>, Walk
[18] and Miiller and Walk [10] have considered the approximation of a
function f which satisfies sup L,(|f|?; x) < o0, x € (q, b) for some p > 1. One
might expect to derive Theorems 2.1 and 2.2 from their theorems. This
turns out to be not possible. Even if one assumes that L, f — f for f(¢) = ¢,
te R, in addition to 1, ¢, and g(¢), in order to use the theorems of [10, 18]
to assert that L,f—f for a function f in C(I,, g, g) (as one can use
Theorem 2.1 to do so), according to [18, Remark 1(b)], one has to find
a p>1 such that

/()17 <g(t)  (teR).

But this is not always possible. For instance, if g(¢)=exp(¢t*+ |¢|) and
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f(t) =exp(?), then f{t) = O(g(1)) (|1 = o) (that is fe C(],, g, g)) but there
is no p>1 such that

Lf(0)] 7 <g()

for te R.

3. EXAMPLES

In this section we shall modify some well-known linear positive
operators so as to approximate unbounded functions on, e.g, (0,1) or
(0, c0). The results in Section 2 will be applied to yield some estimates of
convergence rate for these operators.

ExampLE 1. Let I=(0,1) and I,=[a,,b,]<=1 The operators B,:
C,, 1/t, 1/(1 —t)) » C(I,) defined by

B0 = 3 ()ra-xr ()

k=0

are the Bernstein operators with f(k/n) replaced by f((k + 1)/(n+ 2)). This
modification enables B, to operate on functions which are unbounded near
0 and 1. Straightforward calculations give

1—-2x
n+2’
B (% x)=x+[—(5n+4) x> +3nx+1](n+2)" 2,

1 1 1 1
B,,(—;x)-— PRI PR
t x n+lx n+l1 X

1 1 1 1 n+2 1
B - — _ n+1
"<l—t’x> 1—x+n+11—x ntll—x"

B, (1;x)=1, B, (; x)=x+—F

Hence, by (3), (4), and (5), we have for xe 1,

1 1 n+21 1-2x
ai R S E——— 1— n+l+ -2
(x) (1—x) x )

e x Tt x ) —x (L= x) <2 g — (1= by ) b,
n

n+

1
ﬁi(X)Sm [=x)+(1—x) " ]—x""'(1-x)""

<2(1 _bl)_z/”_a’1'+l/(1 —ay)
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and

x1—2x L
n+2 4n’

Yax)=[—(5n+4) x>+ 3nx +1]/(n +2)* —

Therefore, for fe C(I,, 1/t, 1/(1 —1t)) we have
1B.(f(1); x)—=f(x)l,»0  asn-— oo,

B0 <+ o (fe() ) +Kilhan b,

i<l (1+2)e (D)

+K1(f’ al,bb r’)nVI’

B = < {1 Nt ol Il,c)|:1+1<41n>1/2]}<$)1/2

+Kl(f; alsbb ’7)”71

for xel,=[a,+n,b;,—n],n>0.

and

ExampLE 2. The operators M,: C(I,, 1/t, 1/1 —t) - C(I,) defined by

M,,(f(z);x)=(1—x)"“éo(”k) "f(,,fﬁl)

are the Meyer-Konig and Zeller operators with f (k/(n+k)) replaced by
f((k+1)/(n+k+1)). We have M, (f;x)=x"+4,(x) (i=0,1,2) with

ino(x)=0,
k+1
n+k+1 n+k
ol
n

n

M8

0<dy(x)=(1—x)*'Y ( )

n—+
Lo\ k
+
<1_ n+1
(1-x) )
+
k

I 18

0

0<idnu(x)=(1—x)""! i ( k)x"
k=0

k+1 \? k k—1 <§
X n+k+1 n+kn+k—1{ n
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1 = k+1
M"<_t.;x>=l(1_x)n+l y ('H' + >xk+1
x

287

1
=—(1—(l—x)"*)=——(1-x)"*"'x",
X X

and

1 n+1 S (n+k+1
[ = 1_ n+1 Z k
Mn<1-”x) n (1=x) k=0< k )x

BLES S0 SO U
T n 1—-x 1—x n(l=x)

It follows from (3), (4), and (5) that for xe I,

)< —(1—x)"" ' x'+n"x"2<a;?n ' = (1 —b))"" /b,

Br(x)=1/(1=x) n— A (x)(1 —x) < (2—x)/(1 —x)’n_
<2(1—5y) n7 Y,

3 2 5
P = Aa(x) = 2x Ay (x) <= + =<
n n n

Therefore, for fin C(I;, 1/t, 1/(1 —t)) we have

IM,(f(2); x)~f(x)l;, >0  asn— oo,
M (f; x)—fN <D+ e ) olf 1, e(5/n)")+ K\(f, ay, biyn)n™),

MU0 1@< {7001+ (1450 ) 0L T el )} 5in)

+K1(f;al’ bl’ ”)n_la
and

IM(f x) = < LS Ly + (L4 (5/0)PQ2e) T ol f, 1, €)}(S/n)'?
+Kl(f; al’bls ’7)”71
for xel,=[a,+n,b;—n],n>0.
ExampLE 3. Let I=(0, ), I, =[a,, b;] = I We consider the operator
B,:C{,,1/t,e"")— C(I,) defined by

B,(f(t);x)= ) (—kn> (—x)(1 +x)"""f<k+ 1).

k=0 n
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These are the special Baskakov operators with f(k/n) replaced by
f((k+1)/n). For these operators we have

1
B.(1;x)=1, B, (1; x)=x+;,

B, (1% x)= x>+ [x¥n+ 3x/n+ 1/n*],

B,,(l;x)= " L, (Lx)—(1+x) "]

n—1x

1 1 1 1
b D (L x) L, n32,
x n—1x n—1x

@xQ

B,(e";x)=e"" ) <—kn> (—xe"™)(1+x)7""*

k=0

=e""[14x—xe""] ™" =e"* + u,(x),

where pu,(x)=e""[1+4 x —xe”"] " —e"* converges to O uniformly on
[0, 8] for any 6 >0 (see [12, Theorem 3.6]). Now substitutions into (3),
(4), and (5) yield

1 1 n 1 1

———— = (l4x)7" e x2

2 = —_—
%a(¥) n—1x n—1x

s

=

1
Bix)=e""[1 +x—xe""] " —e"* — we" -,
n

2 2x  x?

x° 3x X
PAX) =—+—+ U ===t =4t n 2K (b + 1)¥n
n n n n n

for xeI,. It is clear that these three sequences converge to 0 uniformly for

x in I,. Hence Theorems 2.1 and 2.2 imply that if f belongs to C(1,, 1/,
e""), then we have

I1B.(f(2); x)—f(x),—»0 as n—o0;
IB,(f x) =) < (L4 ¢ ) 0lf, Iy, clby + 1) n=12)
+ KU, Ty )(@(6) + B,
IB,(f ) — £l < {17 (0] + (1 +zic) o(f', Iy, clby + 1) n~12)

x (b + 1) n= 2+ K(f, I, m){az(x) + B2(x)),

and
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1
IB,(f: x)—f(x) <{||f'||,, +[1 b3 (b4 )nm] olf' 11, c)}
< (b 4+ 1) =2 4 K(f, Ly n)(e2(x) + B2(x))

for x€12=[a1+fl,b1—”l],'7>0-

ExaMpLE 4. Let I=(0, ) and I, =[ay,b,], and let S,: C(I;, 1/t
") — C(I,) be defined by

[*'s) k 1
S,/ x)=e 5 ”"’ ("* )

n

These are the Mirakjan-Szasz operators with f(k/n) replaced by
f((k+1)/n). We have S, (1;x)=1, S (;x)=x+n"", S, (x)=
X34 3x/n+ 072 S, (1) x) = (1/x) e TE o ((nx) Yk + 1)) = 1/x —
(1/x)e™", and S,(e"; x)=exp[nx(e*” —1)] """ ="+ u,(x), where
U,(x) converges to 0 uniformly for x in I, (cf. [6]). It follows that for f in
C(l,, 1/¢t, e")

1S.(f(t); x)—f(x),, -0  as n-co.

Moreover, (10), (11), (12), (13), and (14) will hold with

1
- 2 - —1 —nb
ai(x)=_ nx =2y l<a12n 1"b1 e "

B2(x)=explnx(e" —1)+w/n]—e**—we**n~ !,
i x)=3xn"'+n"?=2xn"'<(b;+1)n"!

ExampLE 5. For I, =[a,,b,]cI=(0, ) and for any k=1, 2, ..., the
Post-Widder operators P,: C(I,, t =%, e**) » C(I,) are defined by

P (f(1); x)= (inixl)! fow e~ = flo)dr

On substituting s = n/x into the identity
f e Tt lemdt=(n+i— 1) (s—w) "’ (m+izl,s>w),
0

we derive that P, (t'e”;x)=[(n+i—1)/(n—1)](n/x)"(n/x—w) "'
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holds when n+i>1 and n/x > w. Thus, taking suitable values of i and w
we obtain the following identities:

P(L;x)=1, PAtx)=x, P} x)=x*+x%n,
k

ke Y kg ok h _
Pt % x)=x""+x |:(n-1)(n—2)---(n—k) 1], nzk+1,

and
P (e"; xy=(1—wx/n) "=e""+ (1 —wx/n) " —e".

k

Since the last two sequences converge uniformly on /; to x~* and "~

respectively, Theorem 2.1 implies

I1P.(f(2); X) —f(xX)ll;, =0

for all fin C(I;, t7%, ") (k, w>0). Moreover, (10), (11), (12), (13), and
(14) will hold with

2 - n*
alx)=x k[(n—l)(n—z)---(n—k)_l]’

B2(x) = (1 ——’f—f) e

2 b2
yin =<
n

ExampLE 6. For I, =[a;,b;]<I=(0, ) and for w>0, k=1, 2,..,, the
Gamma operators G,: C({,, e ”/’ t*) = C(I,) are defined by

n+l o 1
G (03 =S [ e (2

It is known that G,1=1, G,t=x+x/n, and G,*=x*+((3n+1)/
n(n—1)) x°. Also we have

[ (x——) ]t" dt

w

=xn+1 e n1=<1 w —n—1
n+1 (n+1)x

(n+1)*
An—1) - n—k+1)

G (e x) =

and

G, (1% x)=x*
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can easily be shown that G,t, G, ", and G,t* converge uniformly on
to x, ¢, and x*, respectively. Hence we can deduce from Theorem 2.1

at for all fin (I,, ", t*)

1G(f(1); x)=f(x), =0  as n-—co.

In addition, (10), (11), (12), (13), and (14) will hold with

1

ait =~ (1 - ) e e
B2(x) = x* [n(n_l()'ff(ln)ikm—l]—knlxk,
yalx) = %xz — 27)62
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