
JOURNAL OF APPROXIMATION THEORY 57, 278-292 (1989)

Rates for Approximation of Unbounded Functions
by Positive Linear Operators

SEN-YEN SHAW AND CHEH-CHIH YEH

Department of Mathematics, Central University, Chung-Li, Taiwan,
Republic of China

Communicated by P. L. Butzer

Received November 12, 1986; revised November 17, 1987

DEDICATED TO PROFESSOR TADASHI KURODA ON HIS 60TH BIRTHDAY

Let ga(t) and gb(t) be two positive, strictly convex and continuously differentiable
functions on an interval (a, b) (- OCJ ,;;; a < b,;;; OCJ), and let {La} be a sequence of
linear positive operators, each with domain containing 1, t, ga(t), and gb(t). If
La(f; x) converges to f(x) uniformly on a compact subset of (a, b) for the test
functions f(t) = 1, t, ga(t), gb(t), then so does every fE C(a, b) satisfying
f(t)=O(ga(t)) (t~a+) andf(t)=O(gb(t)) (t->b-). We estimate the convergence
rate of LJ in terms of the rates for the test functions and the moduli of continuity
off and /,. © 1989 Academic Press, Inc.

1. INTRODUCTION

The well-known Bohman-Korovkin theorem [1,6] states that the
(arbitrarily close uniform) approximation of all continuous real functions
on [a, b] by a sequence of positive linear operators is guaranteed by such
an approximation for the three test functions: 1, t, and t 2

• Various exten­
sion of this theorem to unbounded functions and quantitative results have
been published in many papers. In particular, we cite works of Ditzian [3],
Eisenberg and Wood [4], Ismail and May [6], Mamedov [8], Muller and
Walk [10], Schurer [11], Sikkema [16], Swetits and Wood [17], and
Walk [18]. In [12] the first author gives a version in which a strictly
convex, continuously differentiable function g(t) is used to replace t2 as the
third test function in order to approximate functions of the order of g(t) as
Itl-+ 00. It was subsequently applied in [12, 13, 14] to obtain many
representation formulas for operator semigroups and cosine functions.

The purpose of this paper is to study the approximation of functions
which may be unboundedly defined in a bounded set. Let ga and g b be two
positive, strictly convex, and continuously differentiable functions on a
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finite or infinite open interval 1= (a, b) in R, and let {L n } be a sequence
of positive linear operators on the space CUI' ga, gb) of functions which are
majorized near a and b by ga and gb, respectively, and are continuous
on an interval 11 := [aI, b l ] cI. In Section 2, we shall establish
a Bohman-Korovkin type approximation theorem for functions in
CUI' ga' gb) and a theorem presenting some quantitative estimates of the
approximation.

Theorem 2.1 asserts that Lnfis pointwise (uniformly) convergent to f on
II for all f in CUI' ga' gb) if and only if it is so for the test functions: 1, t,
ga(t), gb(t). In case (a, b) = ( - 00, (0) and ga = gb, this theorem is a special
case of Theorem 2.2 of [12], in which functions on R m have been treated.
It is perhaps worth mentioning that, compared with other known results,
the assumption: L n(t2, x) ~ x 2 is not necessary in Theorem 2.1. For
instance, if Lnf~ f for f( t) = 1, t, ItI 3

/
2

, then by Theorem 2.1 it holds also
for all f of the order of It1 3

/
2 as t ~ 00, but, without the above assumption,

theorems in [10,18] could not be applied to.
Using the technique found in Shisha and Mond [15], DeVore [2],

Ditzian [3], and Gonska [5], we obtain in Theorem 2.2 quantitative
estimates for the convergence rate of Lnf in terms of the rates for test
functions 1, t, t2

, gA t), s = a, b, and the moduli of continuity of f and 1'.
In Section 3, applications to some well-known positive linear operators

will be made. In some cases, slight modifications are made so that the
operators can be applied to the desired functions.

2. THE ApPROXIMATION THEOREMS

Let 1= (a, b) (- 00 ~ a < b ~ (0) be the interval on which the functions
to be approximated are defined, and let II = [a I' bI] be contained in I. Let
ga(t), gb(t) be given functions which are positive, strictly convex on I,
continuously differentiable on II' and satisfy gb(t)=O(ga(t)) (t~a+) and
ga(t)=O(gb(t)) (t~b-). If a= -00 [resp., b=oo], we further assume
that

lim ga(t)/It! = 00
t -+ -00

(1)

For example, when /=(0,00), ga(t) can be (l+t)-I,tP (p>l), t- a,
exp(wt- a) (cx, w>O), and gb(t) can be tP, exp(wtP ) (p> 1, w>O).
Obviously, ga(t) and gb(t) are continuous on /, and the functions

h,(x, t)=gs(t)- [gs(x)+g~(x)(t-x)] (s = a, b) (2)

are positive for x =I t and are continuous in (x, t) on /1 x I. The strict
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convexity of gs(t) also implies hs(x,t l )<h,(x,t2) whenever t2<tl~X

or t2>tl~X (xEld, and hs(xl>t)<h,(x2,t) whenever X2<XI~t or
X2>XI~t (x"x2Eld. It follows that hs(xl>td~h,(x2,t2) whenever
t2~tl~xl~X2 or X2~XI~tl~t2 (XI,X2EId. This property will be
needed in the proofs of our theorems.

We shall denote by qII,ga,gb) the set of those functionsf(t) on I with
the properties: (i)f(t) is bounded on every compact subset of I; (ii)f(t) is
continuous at every point of II; (iii) f(t) = O(ga(t)) (t --+ a+) and
f(t)=O(gb(t)) (t--+b-). The functions 1, t, ga(t), and gb(t) are already
contained in C(II' ga, gb)' For a positive linear operator L to operate on
qII,ga,gb), we require that L(ga;x)< 00 and L(gb;X)< 00 for all xEII.

For positive linear operators Ln on qII' ga' bb), a~(x) and P~(x) will
denote the functions Ln(hAx, t); x) and Ln(hb(x, t); x), respectively, and
y~(x) will denote Ln((t - X)2; x) whenever it is defined. If we write Ln(ti; x)
Xi+Anlx) (i=O, 1,2) and Ln(gs;x) =gs(x) + Jin,(x) (s=a,b), then

a~(x) = Jina(x) - gAx) AnO(X) - g~(x) Anl(X) +g~(x) XAnO(X), (3)

P~(x) = Jinb(X) - gb(X) AnO(X) - g~(x) Anl(X) +g~(x) XAna(x), (4)

y~(x) = An2(X) - 2XAnl(X) +x 2AnO(X). (5)

For a fixed x E II, a~(x) --+ 0 and P~(x) --+ 0 when Ln(ti; x) --+ Xi (i = 0, 1)
and Ln(gs;x)--+gs(x) (s=a,b); y~(x)-+O when Ln(ti;X)-+Xi (i=0, 1,2).
The assertions hold for uniform convergence on II too.

THEOREM 2.1. Let {Ln} be a sequence of positive linear operators on
qII,ga,gb)' If Ln(ti;X)--+Xi (i=0, 1) and Ln(gs;x)--+gs(x) (s=a,b)for
some x E II (resp. uniformly for all x E I,), then for any f in
qII,ga,gb), Ln(f;x) converges tof(x) at x (resp. uniformly on II)'

LEMMA. If fE C(II, ga, gb) and if 0 < f> < min{ a l - a, b - b l }, then there
is a constant M(J, II' f» such that

(6)

for all xEl l and tEl with It-xl ~f>.

Proof First, we suppose limha + ga(t) = 00. Since J, ga, and g~ are
continuous on the compact set II, they are bounded there by a number
k> O. Hence we have

for all x E II and for t sufficiently close to a. Now the assumptions:
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f(t) = O(ga(t)) (t --t a+) and (l) (in case a = -00) imply the existence of a
M I > 0 and a point a' E (a, at - <5) such that

(x E II, t E (a, a' ]). (7)

Next, suppose liml~a+ga(t)<oo. Thenf(t) is bounded on (a,b l ], and (7)
still holds with M I =2 sup{lf(t)l; tE(a,b l ]}/ha(a t ,al -<5). Here we note
that for xEII and tE(a,a' ], ha(x,t)~ha(al,a'»hAal,al-<5»O as
remarked before.

Similarly, there exist M 2 > 0 and b' E (b I + <5, b) such that

(xE11> tEb', b)). (8)

Finally, since ha(x, t) is positive and continuous on the compact set
{(x, t); XE II> t E [ai, b'], Ix - tl ~ <5}, it assumes a positive minimum m.
Hence we have for (x, t) in this set,

If(t) - f(x)1 ~ (21m) sup{ If(t)l; t E [ai, b' ]} ha(x, t) = M 3 ha(x, t). (9)

Combining (7), (8), and (9), we obtain (6) with M(f,I1> <5) =
M I +M2 +M3 •

Proof of Theorem 2.1. It follows from the lemma that

If(t) - f(x)1 ~ w(f, II' <5) + M(f, II, <5)[ha(x, t) + hb(x, t)]

for all xEII and tEl, where w(f, II> <5)=sup{lf(x)-f(t)l; XEII> tEl,
Ix-tl~<5}. w(f, II' <5) tends to 0 with <5 becausefis continuous at every
point of II' Hence, on applying L n , we have

ILn(j; x) - f(x)1 ~ If(x)IILn(l; x) - 11 + w(f, II' <5) Ln(l; x)

+ M(f,II' <5)[iX~(X)+ P~(x)],

and the proof is complete.

With regard to the convergence rate, we give some estimates in the
following

THEOREM 2.2. Let c be a positive number. Let 12= [a2' b2] and '1 > 0 be
such that [a2-'1, b2 + '1] ell = [ai, bl], and let L n(t2; x) be defined.

If f belongs to CUI' ga' gb), then there exists a constant K(f, 12, '1) such
that for every x E 12

ILn(f; x) - f(x)1 ~ If(x)1 ILn(l; x) - 11 + w(f,II' cYn(x))[Ln(l; x) + c- 2]

+ K(f, 12, '1)[iX~(X) + P~(X)]. (10)

640/57/3-4



282 SHAW AND YEH

If, in addition, I' is continuous on II' then

ILn(j; x) - f(x)1 ::::; If(x)1 ILn(1; x) - 1) + K(f, 12, 11 )((J(~(X) + P~(X)]

+ II'(x)1 Ln(lt-xl; x) +m(j', II, C}'n(x))[Ln(lt-xl; x) + (2C)-l yn (X)]

(11 )

::::; If(x)1 ILn(1; x) - 11 + K(f,I2, 11 )[(J(~(x) + P~(x)]

+Yn(x){ll'(x)I(Ln(1; X))1/2 + m(j', II' cYn(x))[(Ln(1; X))1/2 + (2C)-I]}

(12)

and

ILn(f; x) - f(x)1 ::::; If(x)1 ILn(1; x) - 1) + K(f, 12, 11 )[(J(~(X) + P~(X)]

+ 111'11/1 Ln(lt - xl; x) + m(j', II, c)[Ln(lt - xl; x) + (2c) -ly~(X)] (13)

::::; If(x)IILn(1; x) -11 + K(f, 12, l1)[(J(~(X) + P~(X)]

+ Yn(x){III'II!J(Ln(1; X))1/2 + m(j', II, c)[(Ln(1; X))1/2 + (2C)-l yn(X)]}.

(14 )

Remark. If we substitute the c in (13) and (14) by C}'n(x), then these
two estimates will become (11) and (12) with II'(x)1 replaced by 111'11. We
shall use different techniques to derive these two pairs of estimates.

Proof First, we let f(t), 12 , and 11 play the respective roles of
f(t) - f(x), II, and b in the previous lemma. Then the same argument will
provide two constants K'I , K;, and two points a' E (a, a2 -11) and
b' E (b 2 + 11, b) such that

If(t)1 ::::;K~ha(x, t)

Ifit)1 ::::; K;hb(x, t)

(xEI2, tE (a, a' ]),

(xEI2, tE [b', b)).

Next, for x E I z, t E [ai, az -11], we have

(recall the remark on ha(x, t)). It follows that for xEI2 and tE(a,a2-11]
we have

If(t)1 ::::;max{K~, Kn hAx, t)

and
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Similarly, the following two estimates hold for x E 12 , t E [b 2 +1], b):

If(t)1 ~max{K~, Kn hb(x, t),

If(x)1 ~ Ilfll/2 hb(x, t)/hb(b 2, b2+ 1]) = K2hb(x, t).

Combining these estimates we have for x E 12 and tEl - [a2 -1], b2+ 1]],

If(t)-f(x)1 ~ If(t)1 + If(x)1 ~K(f, 12, 1])[ha(x, t)+hb(x, t)], (15)

where K(f, 12, 1]) = max{ K I, K2} + max{ K~, K~, K~, Kn.
For fixed xEI2 ,any tE[a2-1],b2+1]], and (j>0 we have, as in [15]

(with w(·)=w(f,II' ')),

If(t)-f(x)l~w(lt-xl)~(1+(t-x)2(j~2w(<5). (16)

If, in addition,J' E C(Id, then, as in [19],

If(t)-f(x)1 ~ 1f'(x)(t-x)1 +It 1f'(u)-f'(x)1 dul

~ 1f'(x)llt-xl + It (1 + lu-xl (j~I)W(f', II, (5)duj. (17)

Combining (15) and (16) we can deduce for all t in I,

If(t) -f(x)1 ~ (1 + (t - X)2<5 -2) w(<5) + K(f, 12, 1] )[ha(x, t) + hb(x, t)],

from which (10) follows easily, by applying L n and then letting (j! cYn(x)
(d. Mond [9]). The estimate in (11) and (12) is derived in the same way,
using (17) instead of (16) and using the fact that L n ( It - xl; x) ~
Yn(x)1/2(Ln(1; X))1/2.

For the proof of (13) and (14) we shall use the technique in [5]. Letf
be in C(II> ga' gb) and continuously differentiable on II' We define

and

{

f'(a)

!,(x) = f'(x)

f'(b)

k(x)=(2c)~1r !'(x+s)ds
-c

for x<al,

for a I ~ X ~ bI'

for x > b l ,

Then k E CI(II) and we have for x E II that Ik(x)1 ~ 11f' II/I and

Ik'(x)1 = I(2c) -I [!'(x + c) - J'(x - c)]1

~(2C)-1 [1J'(x+c)-f'(x)1 + 1f'(x)-!'(x-c)l]

~ c~lw(f', II, c).
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There exists a fJxE [-c, c] such that k(x) =!'(x+ fJ x) and so

l(f' - k)(x)1 = If'(x) - !'(x + fJx)1 ~ w(f', I], c).

Thus, if we choose a g in C 2(I]) such that g' = k, then

and

II (f - g )'11/1 ~ w(f', I], c).

Now for xEI2 and tE [a2 - Yf, b 2 + Yf],

If(t) - f(x)1 ~ l(f- g)(t) - (f - g)(x)1 + Ig(t) - g(x)1

= l(f- g)'(u)(t-x)1 + Ig'(x)(t -x) + gll~V) (t _X)21

1
~ [11(f-gn + Ilg'II]lt-xl +"2llg"II(t-x)2

~ [w(f', I], c) + 1If'11] It - xl +Lw(f', II> c)(t - xf

Combining this and (15) we obtain that for xEI2 and tEl

If(t) - f(x)1 ~ K(f, 12 , Yf )[hAx, t) + hb(x, 1)] + [w(f', I], c) + 11f' II ]It - xl

+ ;c w(f', I], c)(t-xf,

from which (13) and (14) follow immediately by applying Ln.

Remark. Under the assumption that Lnf --+ f for f(t) = 1, t, t 2
, Walk

[18] and Muller and Walk [10] have considered the approximation of a
functionfwhich satisfies sup L n ( IfIP; x) < 00, X E (a, b) for some p > 1. One
might expect to derive Theorems 2.1 and 2.2 from their theorems. This
turns out to be not possible. Even if one assumes that Lnf --+ ffor f(t) = t 2

,

t E R, in addition to 1, t, and g( t), in order to use the theorems of [10, 18]
to assert that Lnf --+ f for a function f in C(It, g, g) (as one can use
Theorem 2.1 to do so), according to [18, Remark 1(b)], one has to find
a p> 1 such that

If(t)1 P ~g(t) (tE R).

But this is not always possible. For instance, if g(t) = exp(t2 + It I) and
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f(t) = exp(t 2
), thenfit) = O(g(t)) (Itl-4 (0) (that isfE C(II> g, g)) but there

is no p > 1 such that
If(t)1 p ~g(t)

for t E R.

3. EXAMPLES

In this section we shall modify some well-known linear positive
operators so as to approximate unbounded functions on, e.g., (0, 1) or
(0, (0). The results in Section 2 will be applied to yield some estimates of
convergence rate for these operators.

EXAMPLE 1. Let 1=(0, 1) and II = [ai, bl ] c I. The operators Bn :

CUI' l/t, 1/(1 - t)) -4 C(Id defined by

Bn(f(t); x) = kto C) x
k
(l- xt-

kfG: ~)

are the Bernstein operators with f(k/n) replaced by f( (k + 1)/(n + 2)). This
modification enables Bn to operate on functions which are unbounded near°and 1. Straightforward calculations give

1-2x
Bn(1; x) = 1, Bn(t; x) = x +--2'

n+

Bn(t2; x) = x 2+ [ - (5n + 4) x 2+ 3nx + l](n + 2)-2,

Bn(~; x) =~+_1_~_n + 2 (l-x)n+ I~,
t x n+lx n+l x

B (_1_. x) =_1_ + _1 1__ n+ 2 _1_ xn + I

n I-t' I-x n+ll-x n+ll-x .

Hence, by (3), (4), and (5), we have for xEI I

2 11 n+21 n+1 _2 1 - 2x
<X n(x)=-------(I-x) +x --

n+lx n+lx n+2

1 2
~ n + 2 (x- 2 + X-I) - x- I (1- x)n+ I ~;;/ai - (1- bdn + I/b l ,
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1-2x 1
y~(x)= [-(5n+4)x2+3nx+ l]/(n+2)2-2x--:::;-.

n+2 4n

Therefore, for fE CUI' lit, 1/(1- t)) we have

as n --+ 00,

IBnCf; x) - f(x)1 :::; (1 + c- 2) W (f, II' c (:nY/2) +KI(f, ai' b l , l1)n-l,

IBn(f; x) - f(x)1 :::; {I/,(X)I + (1 +L) W (/', II> c (4~Y/2) }(4~Y/2

+ KI(f, ai' b l , 11) n- I,

and

IBn(f; x) - f(x)1 :::; {II/' IIII + w(f', II' c) [1 + ;c (:n) 1/2]}(L)1/2
+ K I (f, a I' bI' 11) n - I

for xEI2= [al +11, b l -l1], 11>0.

EXAMPLE 2. The operators M n : CUI' lit, 1/1- t) --+ CUd defined by

are the Meyer-Konig and Zeller operators with f(kl(n + k)) replaced by
f((k + 1)/(n + k + 1)). We have Mn(ti; x) = Xi + Ani(X) (i = 0, 1,2) with
AnO(X) =0,
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M n (~; X) = ~ (1 - Xr + I I (n +k + 1) xk + I
t X k~O k + 1

1 1
=- (1- (l-xr+ 1)= __ (l-xr+ lX-I,

X X

and

M n (_1_; X) =n+ 1 (1 _ Xr + I I (n + k + 1) xk

1- t n k=O k

n+1 1 1 1
=----=--+ .

n 1 - X 1 - X n( 1 - x)

It follows from (3), (4), and (5) that for xEII

IX~(X) ~ -(1- xr+ I X-I + n- Ix- 2~ ai2n-1 - (1- bdn+ Ilb l ,

P~(x) = 1/( 1- x) n - Ani (x)( 1 - x) - 2 ~ (2 - X )/( 1 - X )2n

~2(1-bl)-2n-l,

2 3 2x 5
Yn(x) = An2(x) - 2x Anl(X) < - +-<-.

n n n

287

Therefore, for fin CUI' lit, 1/(1-t)) we have

11Mn(j(t); x) - f(x) III1 --+° as n --+ 00,

IMn(j; x) - f(x)1 ~ (1 + c- 2
) w(J, II> c(Sln )112) + KI(J, al> bl> '1) n -I,

IMn(j; x) - f(x)1 ~ {1!,(x)1 +( 1+L) w(j', II' c(Sln )112) }(Sln )112

+KI(J, ai' b l , '1) n- I
,

and

IMn(j; x) - f(x)1 ~ {II!' 1111 +(1 + (Sin )1/2(2c) -I w(j', II' c) }(Sln )1/
2

+KI(J, ai' bl , '1) n- I

for xEI2 =[al +'1, b l -'1], '1>0.

EXAMPLE 3. Let 1= (0,00), II = [ai, bl ] c I. We consider the operator
En: CUI' lit, eW1

) --+ CUI) defined by



288 SHAW AND YEH

These are the special Baskakov operators with f(kln) replaced by
f((k+ 1)/n). For these operators we have

1
Bn(t;x)=x+-,

n

1 lIn 1 n+1 2=-+-------(I+x)- , n~,
x n-lx n-lx

Bn(e wt
; x) = ew

/
nk~O (~n) (_xe w

/
n)k(1 + x)-n-k

= ew
/
n[1 + x - xe w

/
n] -n = eWX + Iln(X),

where Iln(X) = ew
/
n[1 +x_xew/n]-n_ewx converges to 0 uniformly on

[0,0] for any 0>0 (see [12, Theorem 3.6]). Now substitutions into (3),
(4), and (5) yield

Z lIn 1 -n+ I -z 1oc n(x)=-------(I+x) +x-,
n-lx n-lx n

for x E II' It is clear that these three sequences converge to 0 uniformly for
x in II' Hence Theorems 2.1 and 2.2 imply that if f belongs to CUI' lit,
ewt

), then we have

as n -+ 00;

IBn(f; x) - f(x)1 ~ (1 + c- Z
) w(f, II, c(b l + 1) n- I

/
Z

)

+ K(f, Iz, '1)(oc~(x) + fJ~(x)),

IBn(f; x) - f(x)/ ~ {1f'(x)1 + (1 + ;c) w(f', II' c(b l + 1) n- I
/
Z

}

x (b l + 1) n -I/Z + K(f, Iz, '1 )(oc~(x) + fJ~(x)),

and
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IBn(f; x)- f(x)1 ~ {11f'11/1 + [1 +L(b l + 1) n- I
/
2] w(f', II> C)}

x (b I + 1) n -1/2 + K(f, 12 , '1)(a~(x) + P~(X))

289

EXAMPLE 4. Let 1= (0, (0) and II = [aI' bl]' and let Sn: C(ll> l/t,
eWI ) --+ C(ld be defined by

00 (nx)k (k + 1)
Sn(f(t);x)=e- nx L: -k

'
f - .

k~O' n

These are the Mirakjan-Szasz operators with f(k/n) replaced by
f((k+ l)/n). We have Sn(l;x)= 1, Sn(t;x)=x+n-I, Sn(t2;x)=
x 2+ 3x/n + n- 2, Sn(l/t;x) = (l/x)e-nxLk~o ((nx)k+I/(k + I)!) = l/x­
(l/x) e- nx, and Sn(e WI ; x) = exp[nx(ew/n-1)] ew/n= eWx + fln(x), where
fln(X) converges to °uniformly for x in II (cf. [6]). It follows that for fin
C(ll' l/t, eWI )

as n --+ 00.

Moreover, (10), (11), (12), (13), and (14) will hold with

P~(x) = exp[nx(ew/n- 1) + win] - eWX - w eWX n -1,

y~(x) = 3xn- 1 +n-2- 2xn- 1 < (b l + 1) n- I.

EXAMPLE 5. For II = [aI, b l ] cI= (0, (0) and for any k= 1, 2, ..., the
Post-Widder operators Pn : C(ll' t- k

, eWI ) --+ C(ll) are defined by

On substituting s = nix into the identity

tOO e - sl tn + ; - I e wI dt = (n + i-I)! (s _ w) - n - i (n + i ~ 1, s > w),

we derive that Pn(ti ewl;x)=[(n+i-l)l/(n-l)!](n/xt(n/x-w)-n-i
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holds when n + i ~ 1 and nix> w. Thus, taking suitable values of i and w
we obtain the following identities:

Pn(1; x) = 1, Pn(t; x) = x, P n(t2; x) = x 2+ x 2ln,

Pn(t~k; x) =x-
k + x-

k [(n-l)(n-~) ... (n-k) -1]. n ~k+ 1,

and

Since the last two sequences converge uniformly on II to x- k and eWx
,

respectively, Theorem 2.1 implies

IIPn(f(t); x) - f(x)lll 1 --.0

for allfin CUI' t-\ eW1
) (k, w>O). Moreover, (10), (11), (12), (13), and

(14) will hold with

OC
2
(X)=X-

k
[ n

k -IJ
n (n-l)(n-2) ... (n-k) '

(
wx)-n

f3~(x)= 1---;;- _ewx
,

EXAMPLE 6. For II = [al> hI] cI= (0, (0) and for w>O, k= 1, 2'00" the
Gamma operators Gn: CUI' eW

/
1
, tk ) --. CUI) are defined by

xn+lfOO (n+l)Gn(f(t); x) = -,- e- x1 tnf -- dt.
n. 0 t

It is known that Gn l=l, Gnt=x+xln, and Gnt2=x2+((3n+l)1
n(n - 1)) x 2

• Also we have

and

(n + l)k
G (tk. x) = x k ---,--_..,...e-_-:-'-----:-_-;-:-
n' n(n - 1) ... (n - k + 1)
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as n -. 00.

It can easily be shown that Gnt, Gnew/t, and Gntk converge uniformly on
/1 to x, eW

/
x

, and xk, respectively. Hence we can deduce from Theorem 2.1
that for all f in (/1' ew

/
t
, tk

)

IIGn(f(t); x) - f(x)1I Ll ~ 0

In addition, (10), (11), (12), (13), and (14) will hold with

C(~(x)= _ew/t+(1_ w )-n-I +~ew/x,
(n + 1)x nx

2 k [ (n + 1)k J -I k
f3n(x)=x n(n-1) ... (n-k+1)-1 -kn x,

2 3n + 1 2 2x2

Yn(x)= ( 1)x --.nn- n
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