Rates for Approximation of Unbounded Functions by Positive Linear Operators

Sen-Yen Shaw and Cheh-Chit Yeh
Department of Mathematics, Central University, Chung-Li, Taiwan, Republic of China
Communicated by P. L. Butzer

Received November 12, 1986; revised November 17, 1987
DEDICATED TO PROFESSOR TADASHI KURODA ON HIS 60TH BIRTHDAY

Abstract

Let $g_{a}(t)$ and $g_{b}(t)$ be two positive, strictly convex and continuously differentiable functions on an interval $(a, b)(-\infty \leqslant a<b \leqslant \infty)$, and let $\left\{L_{n}\right\}$ be a sequence of linear positive operators, each with domain containing $1, t, g_{a}(t)$, and $g_{b}(t)$. If $L_{n}(f ; x)$ converges to $f(x)$ uniformly on a compact subset of (a, b) for the test functions $f(t)=1, t, g_{a}(t), g_{b}(t)$, then so does every $f \in C(a, b)$ satisfying $f(t)=O\left(g_{a}(t)\right)\left(t \rightarrow a^{+}\right)$and $f(t)=O\left(g_{b}(t)\right)\left(t \rightarrow b^{-}\right)$. We estimate the convergence rate of $L_{n} f$ in terms of the rates for the test functions and the moduli of continuity of f and f^{\prime}. © 1989 Academic Press, Inc.

1. Introduction

The well-known Bohman-Korovkin theorem [1,6] states that the (arbitrarily close uniform) approximation of all continuous real functions on $[a, b]$ by a sequence of positive linear operators is guaranteed by such an approximation for the three test functions: $1, t$, and t^{2}. Various extension of this theorem to unbounded functions and quantitative results have been published in many papers. In particular, we cite works of Ditzian [3], Eisenberg and Wood [4], Ismail and May [6], Mamedov [8], Müller and Walk [10], Schurer [11], Sikkema [16], Swetits and Wood [17], and Walk [18]. In [12] the first author gives a version in which a strictly convex, continuously differentiable function $g(t)$ is used to replace t^{2} as the third test function in order to approximate functions of the order of $g(t)$ as $|t| \rightarrow \infty$. It was subsequently applied in [12, 13, 14] to obtain many representation formulas for operator semigroups and cosine functions.

The purpose of this paper is to study the approximation of functions which may be unboundedly defined in a bounded set. Let g_{a} and g_{b} be two positive, strictly convex, and continuously differentiable functions on a
finite or infinite open interval $I=(a, b)$ in R, and let $\left\{L_{n}\right\}$ be a sequence of positive linear operators on the space $C\left(I_{1}, g_{a}, g_{b}\right)$ of functions which are majorized near a and b by g_{a} and g_{b}, respectively, and are continuous on an interval $I_{1}:=\left[a_{1}, b_{1}\right] \subset I$. In Section 2, we shall establish a Bohman-Korovkin type approximation theorem for functions in $C\left(I_{1}, g_{a}, g_{b}\right)$ and a theorem presenting some quantitative estimates of the approximation.

Theorem 2.1 asserts that $L_{n} f$ is pointwise (uniformly) convergent to f on I_{1} for all f in $C\left(I_{1}, g_{a}, g_{b}\right)$ if and only if it is so for the test functions: $1, t$, $g_{a}(t), g_{b}(t)$. In case $(a, b)=(-\infty, \infty)$ and $g_{a}=g_{b}$, this theorem is a special case of Theorem 2.2 of [12], in which functions on R^{m} have been treated. It is perhaps worth mentioning that, compared with other known results, the assumption: $L_{n}\left(t^{2}, x\right) \rightarrow x^{2}$ is not necessary in Theorem 2.1. For instance, if $L_{n} f \rightarrow f$ for $f(t)=1, t,|t|^{3 / 2}$, then by Theorem 2.1 it holds also for all f of the order of $|t|^{3 / 2}$ as $t \rightarrow \infty$, but, without the above assumption, theorems in $[10,18]$ could not be applied to.

Using the technique found in Shisha and Mond [15], DeVore [2], Ditzian [3], and Gonska [5], we obtain in Theorem 2.2 quantitative estimates for the convergence rate of $L_{n} f$ in terms of the rates for test functions $1, t, t^{2}, g_{s}(t), s=a, b$, and the moduli of continuity of f and f^{\prime}.
In Section 3, applications to some well-known positive linear operators will be made. In some cases, slight modifications are made so that the operators can be applied to the desired functions.

2. The Approximation Theorems

Let $I=(a, b)(-\infty \leqslant a<b \leqslant \infty)$ be the interval on which the functions to be approximated are defined, and let $I_{1}=\left[a_{1}, b_{1}\right]$ be contained in I. Let $g_{a}(t), g_{b}(t)$ be given functions which are positive, strictly convex on I, continuously differentiable on I_{1}, and satisfy $g_{b}(t)=O\left(g_{a}(t)\right)\left(t \rightarrow a^{+}\right)$and $g_{a}(t)=O\left(g_{b}(t)\right)\left(t \rightarrow b^{-}\right)$. If $a=-\infty$ [resp., $b=\infty$], we further assume that

$$
\begin{equation*}
\lim _{t \rightarrow-\infty} g_{a}(t) /|t|=\infty \quad\left[\text { resp., } \lim _{t \rightarrow \infty} g_{b}(t) /|t|=\infty\right] \tag{1}
\end{equation*}
$$

For example, when $I=(0, \infty), g_{a}(t)$ can be $(1+t)^{-1}, t^{p}(p>1), t^{-\alpha}$, $\exp \left(w t^{-\alpha}\right)(\alpha, w>0)$, and $g_{b}(t)$ can be $t^{p}, \exp \left(w t^{p}\right)(p>1, w>0)$. Obviously, $g_{a}(t)$ and $g_{b}(t)$ are continuous on I, and the functions

$$
\begin{equation*}
h_{s}(x, t)=g_{s}(t)-\left[g_{s}(x)+g_{s}^{\prime}(x)(t-x)\right] \quad(s=a, b) \tag{2}
\end{equation*}
$$

are positive for $x \neq t$ and are continuous in (x, t) on $I_{1} \times I$. The strict
convexity of $g_{s}(t)$ also implies $h_{s}\left(x, t_{1}\right)<h_{s}\left(x, t_{2}\right)$ whenever $t_{2}<t_{1} \leqslant x$ or $t_{2}>t_{1} \geqslant x \quad\left(x \in I_{1}\right)$, and $h_{s}\left(x_{1}, t\right)<h_{s}\left(x_{2}, t\right)$ whenever $x_{2}<x_{1} \leqslant t$ or $x_{2}>x_{1} \geqslant t \quad\left(x_{1}, x_{2} \in I_{1}\right)$. It follows that $h_{s}\left(x_{1}, t_{1}\right) \leqslant h_{s}\left(x_{2}, t_{2}\right)$ whenever $t_{2} \leqslant t_{1} \leqslant x_{1} \leqslant x_{2}$ or $x_{2} \leqslant x_{1} \leqslant t_{1} \leqslant t_{2} \quad\left(x_{1}, x_{2} \in I_{1}\right)$. This property will be needed in the proofs of our theorems.

We shall denote by $C\left(I_{1}, g_{a}, g_{b}\right)$ the set of those functions $f(t)$ on I with the properties: (i) $f(t)$ is bounded on every compact subset of I; (ii) $f(t)$ is continuous at every point of I_{1}; (iii) $f(t)=O\left(g_{a}(t)\right)\left(t \rightarrow a^{+}\right)$and $f(t)=O\left(g_{b}(t)\right)\left(t \rightarrow b^{-}\right)$. The functions $1, t, g_{a}(t)$, and $g_{b}(t)$ are already contained in $C\left(I_{1}, g_{a}, g_{b}\right)$. For a positive linear operator L to operate on $C\left(I_{1}, g_{a}, g_{b}\right)$, we require that $L\left(g_{a} ; x\right)<\infty$ and $L\left(g_{b} ; x\right)<\infty$ for all $x \in I_{1}$.

For positive linear operators L_{n} on $C\left(I_{1}, g_{a}, b_{b}\right), \alpha_{n}^{2}(x)$ and $\beta_{n}^{2}(x)$ will denote the functions $L_{n}\left(h_{a}(x, t) ; x\right)$ and $L_{n}\left(h_{b}(x, t) ; x\right)$, respectively, and $\gamma_{n}^{2}(x)$ will denote $L_{n}\left((t-x)^{2} ; x\right)$ whenever it is defined. If we write $L_{n}\left(t^{i} ; x\right)$ $x^{i}+\lambda_{n i}(x)(i=0,1,2)$ and $L_{n}\left(g_{s} ; x\right)=g_{s}(x)+\mu_{n s}(x)(s=a, b)$, then

$$
\begin{align*}
& \alpha_{n}^{2}(x)=\mu_{n a}(x)-g_{a}(x) \lambda_{n 0}(x)-g_{a}^{\prime}(x) \lambda_{n 1}(x)+g_{a}^{\prime}(x) x \lambda_{n 0}(x), \tag{3}\\
& \beta_{n}^{2}(x)=\mu_{n b}(x)-g_{b}(x) \lambda_{n 0}(x)-g_{b}^{\prime}(x) \lambda_{n 1}(x)+g_{b}^{\prime}(x) x \lambda_{n 0}(x) \tag{4}\\
& \gamma_{n}^{2}(x)=\lambda_{n 2}(x)-2 x \lambda_{n 1}(x)+x^{2} \lambda_{n 0}(x) \tag{5}
\end{align*}
$$

For a fixed $x \in I_{1}, \alpha_{n}^{2}(x) \rightarrow 0$ and $\beta_{n}^{2}(x) \rightarrow 0$ when $L_{n}\left(t^{i} ; x\right) \rightarrow x^{i}(i=0,1)$ and $L_{n}\left(g_{s} ; x\right) \rightarrow g_{s}(x)(s=a, b) ; \gamma_{n}^{2}(x) \rightarrow 0$ when $L_{n}\left(t^{i} ; x\right) \rightarrow x^{i}(i=0,1,2)$. The assertions hold for uniform convergence on I_{1} too.

Theorem 2.1. Let $\left\{L_{n}\right\}$ be a sequence of positive linear operators on $C\left(I_{1}, g_{a}, g_{b}\right)$. If $L_{n}\left(t^{i} ; x\right) \rightarrow x^{i}(i=0,1)$ and $L_{n}\left(g_{s} ; x\right) \rightarrow g_{s}(x)(s=a, b)$ for some $x \in I_{1}$ (resp. uniformly for all $x \in I_{1}$), then for any f in $C\left(I_{1}, g_{a}, g_{b}\right), L_{n}(f ; x)$ converges to $f(x)$ at x (resp. uniformly on $\left.I_{1}\right)$.

Lemma. If $f \in C\left(I_{1}, g_{a}, g_{b}\right)$ and if $0<\delta<\min \left\{a_{1}-a, b-b_{1}\right\}$, then there is a constant $M\left(f, I_{1}, \delta\right)$ such that

$$
\begin{equation*}
|f(t)-f(x)| \leqslant M\left(f, I_{1}, \delta\right)\left[h_{a}(x, t)+h_{b}(x, t)\right] \tag{6}
\end{equation*}
$$

for all $x \in I_{1}$ and $t \in I$ with $|t-x| \geqslant \delta$.
Proof. First, we suppose $\lim _{t \rightarrow a^{+}} g_{a}(t)=\infty$. Since f, g_{a}, and g_{a}^{\prime} are continuous on the compact set I_{1}, they are bounded there by a number $k>0$. Hence we have

$$
\frac{|f(t)-f(x)|}{h_{a}(x, t)} \leqslant \frac{|f(t)|+k}{g_{a}(t)}\left\{1-\frac{k}{g_{a}(t)}-k \frac{|t|+k}{g_{a}(t)}\right\}^{-1}
$$

for all $x \in I_{1}$ and for t sufficiently close to a. Now the assumptions:
$f(t)=O\left(g_{a}(t)\right)\left(t \rightarrow a^{+}\right)$and (1) (in case $\left.a=-\infty\right)$ imply the existence of a $M_{1}>0$ and a point $a^{\prime} \in\left(a, a_{1}-\delta\right)$ such that

$$
\begin{equation*}
|f(t)-f(x)| \leqslant M_{1} h_{a}(x, t) \quad\left(x \in I_{1}, t \in\left(a, a^{\prime}\right]\right) \tag{7}
\end{equation*}
$$

Next, suppose $\lim _{t \rightarrow a^{+}} g_{a}(t)<\infty$. Then $f(t)$ is bounded on $\left(a, b_{1}\right]$, and (7) still holds with $M_{1}=2 \sup \left\{|f(t)| ; t \in\left(a, b_{1}\right]\right\} / h_{a}\left(a_{1}, a_{1}-\delta\right)$. Here we note that for $x \in I_{1}$ and $t \in\left(a, a^{\prime}\right], h_{a}(x, t) \geqslant h_{a}\left(a_{1}, a^{\prime}\right)>h_{a}\left(a_{1}, a_{1}-\delta\right)>0$ as remarked before.

Similarly, there exist $M_{2}>0$ and $b^{\prime} \in\left(b_{1}+\delta, b\right)$ such that

$$
\begin{equation*}
\left.|f(t)-f(x)| \leqslant M_{2} h_{b}(x, t) \quad\left(x \in I_{1}, t \in b^{\prime}, b\right)\right) \tag{8}
\end{equation*}
$$

Finally, since $h_{a}(x, t)$ is positive and continuous on the compact set $\left\{(x, t) ; x \in I_{1}, t \in\left[a^{\prime}, b^{\prime}\right],|x-t| \geqslant \delta\right\}$, it assumes a positive minimum m. Hence we have for (x, t) in this set,

$$
\begin{equation*}
|f(t)-f(x)| \leqslant(2 / m) \sup \left\{|f(t)| ; t \in\left[a^{\prime}, b^{\prime}\right]\right\} h_{a}(x, t)=M_{3} h_{a}(x, t) \tag{9}
\end{equation*}
$$

Combining (7), (8), and (9), we obtain (6) with $M\left(f, I_{1}, \delta\right)=$ $M_{1}+M_{2}+M_{3}$.

Proof of Theorem 2.1. It follows from the lemma that

$$
|f(t)-f(x)| \leqslant \omega\left(f, I_{1}, \delta\right)+M\left(f, I_{1}, \delta\right)\left[h_{a}(x, t)+h_{b}(x, t)\right]
$$

for all $x \in I_{1}$ and $t \in I$, where $\omega\left(f, I_{1}, \delta\right)=\sup \left\{|f(x)-f(t)| ; x \in I_{1}, t \in I\right.$, $|x-t| \leqslant \delta\} . \omega\left(f, I_{1}, \delta\right)$ tends to 0 with δ because f is continuous at every point of I_{1}. Hence, on applying L_{n}, we have

$$
\begin{aligned}
\left|L_{n}(f ; x)-f(x)\right| \leqslant & |f(x)|\left|L_{n}(1 ; x)-1\right|+\omega\left(f, I_{1}, \delta\right) L_{n}(1 ; x) \\
& +M\left(f, I_{1}, \delta\right)\left[\alpha_{n}^{2}(x)+\beta_{n}^{2}(x)\right]
\end{aligned}
$$

and the proof is complete.
With regard to the convergence rate, we give some estimates in the following

Theorem 2.2. Let c be a positive number. Let $I_{2}=\left[a_{2}, b_{2}\right]$ and $\eta>0$ be such that $\left[a_{2}-\eta, b_{2}+\eta\right] \subset I_{1}=\left[a_{1}, b_{1}\right]$, and let $L_{n}\left(t^{2} ; x\right)$ be defined.

If f belongs to $C\left(I_{1}, g_{a}, g_{b}\right)$, then there exists a constant $K\left(f, I_{2}, \eta\right)$ such that for every $x \in I_{2}$

$$
\begin{align*}
\left|L_{n}(f ; x)-f(x)\right| \leqslant & |f(x)|\left|L_{n}(1 ; x)-1\right|+\omega\left(f, I_{1}, c \gamma_{n}(x)\right)\left[L_{n}(1 ; x)+c^{-2}\right] \\
& +K\left(f, I_{2}, \eta\right)\left[\alpha_{n}^{2}(x)+\beta_{n}^{2}(x)\right] . \tag{10}
\end{align*}
$$

If, in addition, f^{\prime} is continuous on I_{1}, then

$$
\begin{align*}
& \left.\left|L_{n}(f ; x)-f(x)\right| \leqslant|f(x)| \mid L_{n}(1 ; x)-1\right)+K\left(f, I_{2}, \eta\right)\left(\alpha_{n}^{2}(x)+\beta_{n}^{2}(x)\right] \\
& \quad+\left|f^{\prime}(x)\right| L_{n}(|t-x| ; x)+\omega\left(f^{\prime}, I_{1}, c \gamma_{n}(x)\right)\left[L_{n}(|t-x| ; x)+(2 c)^{-1} \gamma_{n}(x)\right] \tag{11}\\
& \leqslant \\
& \quad+|f(x)|\left|L_{n}(1 ; x)-1\right|+K\left(f, I_{2}, \eta\right)\left[\alpha_{n}^{2}(x)+\beta_{n}^{2}(x)\right] \tag{12}\\
& \quad+\gamma_{n}(x)\left\{\left|f^{\prime}(x)\right|\left(L_{n}(1 ; x)\right)^{1 / 2}+\omega\left(f^{\prime}, I_{1}, c \gamma_{n}(x)\right)\left[\left(L_{n}(1 ; x)\right)^{1 / 2}+(2 c)^{-1}\right]\right\}
\end{align*}
$$

and

$$
\begin{align*}
& \left.\left|L_{n}(f ; x)-f(x)\right| \leqslant|f(x)| \mid L_{n}(1 ; x)-1\right)+K\left(f, I_{2}, \eta\right)\left[\alpha_{n}^{2}(x)+\beta_{n}^{2}(x)\right] \\
& \quad+\left\|f^{\prime}\right\|_{I_{1}} L_{n}(|t-x| ; x)+\omega\left(f^{\prime}, I_{1}, c\right)\left[L_{n}(|t-x| ; x)+(2 c)^{-1} \gamma_{n}^{2}(x)\right] \tag{13}\\
& \leqslant \\
& \quad|f(x)|\left|L_{n}(1 ; x)-1\right|+K\left(f, I_{2}, \eta\right)\left[\alpha_{n}^{2}(x)+\beta_{n}^{2}(x)\right] \tag{14}\\
& \quad+\gamma_{n}(x)\left\{\left\|f^{\prime}\right\|_{I_{1}}\left(L_{n}(1 ; x)\right)^{1 / 2}+\omega\left(f^{\prime}, I_{1}, c\right)\left[\left(L_{n}(1 ; x)\right)^{1 / 2}+(2 c)^{-1} \gamma_{n}(x)\right]\right\} .
\end{align*}
$$

Remark. If we substitute the c in (13) and (14) by $c \gamma_{n}(x)$, then these two estimates will become (11) and (12) with $\left|f^{\prime}(x)\right|$ replaced by $\left\|f^{\prime}\right\|$. We shall use different techniques to derive these two pairs of estimates.

Proof. First, we let $f(t), I_{2}$, and η play the respective roles of $f(t)-f(x), I_{1}$, and δ in the previous lemma. Then the same argument will provide two constants $K_{1}^{\prime}, K_{2}^{\prime}$, and two points $a^{\prime} \in\left(a, a_{2}-\eta\right)$ and $b^{\prime} \in\left(b_{2}+\eta, b\right)$ such that

$$
\begin{array}{ll}
|f(t)| \leqslant K_{1}^{\prime} h_{a}(x, t) & \left(x \in I_{2}, t \in\left(a, a^{\prime}\right]\right), \\
|f(t)| \leqslant K_{2}^{\prime} h_{b}(x, t) & \left(x \in I_{2}, t \in\left[b^{\prime}, b\right)\right) .
\end{array}
$$

Next, for $x \in I_{2}, t \in\left[a^{\prime}, a_{2}-\eta\right]$, we have

$$
|f(t)| \leqslant \sup \left\{|f(t)| ; t \in\left[a^{\prime}, a_{2}-\eta\right]\right\}\left(h_{a}\left(a_{2}, a_{2}-\eta\right)\right)^{-1} h_{a}(x, t)=K_{1}^{\prime \prime} h_{a}(x, t)
$$

(recall the remark on $h_{a}(x, t)$). It follows that for $x \in I_{2}$ and $t \in\left(a, a_{2}-\eta\right]$ we have

$$
|f(t)| \leqslant \max \left\{K_{1}^{\prime}, K_{1}^{\prime \prime}\right\} h_{a}(x, t)
$$

and

$$
|f(x)| \leqslant\|f\|_{I_{2}} h_{a}(x, t) / h_{a}\left(a_{2}, a_{2}-\eta\right)=K_{1} h_{a}(x, t) .
$$

Similarly, the following two estimates hold for $x \in I_{2}, t \in\left[b_{2}+\eta, b\right)$:

$$
\begin{gathered}
|f(t)| \leqslant \max \left\{K_{2}^{\prime}, K_{2}^{\prime \prime}\right\} h_{b}(x, t), \\
|f(x)| \leqslant\|f\|_{L_{2}} h_{b}(x, t) / h_{b}\left(b_{2}, b_{2}+\eta\right)=K_{2} h_{b}(x, t) .
\end{gathered}
$$

Combining these estimates we have for $x \in I_{2}$ and $t \in I-\left[a_{2}-\eta, b_{2}+\eta\right]$,

$$
\begin{equation*}
|f(t)-f(x)| \leqslant|f(t)|+|f(x)| \leqslant K\left(f, I_{2}, \eta\right)\left[h_{a}(x, t)+h_{b}(x, t)\right], \tag{15}
\end{equation*}
$$

where $K\left(f, I_{2}, \eta\right)=\max \left\{K_{1}, K_{2}\right\}+\max \left\{K_{1}^{\prime}, K_{1}^{\prime \prime}, K_{2}^{\prime}, K_{2}^{\prime \prime}\right\}$.
For fixed $x \in I_{2}$, any $t \in\left[a_{2}-\eta, b_{2}+\eta\right]$, and $\delta>0$ we have, as in [15] (with $\omega(\cdot)=\omega\left(f, I_{1}, \cdot\right)$),

$$
\begin{equation*}
|f(t)-f(x)| \leqslant \omega(|t-x|) \leqslant\left(1+(t-x)^{2} \delta^{-2} \omega(\delta) .\right. \tag{16}
\end{equation*}
$$

If, in addition, $f^{\prime} \in C\left(I_{1}\right)$, then, as in [19],

$$
\begin{align*}
|f(t)-f(x)| & \leqslant\left|f^{\prime}(x)(t-x)\right|+\left|\int_{x}^{t}\right| f^{\prime}(u)-f^{\prime}(x)|d u| \\
& \leqslant\left|f^{\prime}(x)\right||t-x|+\left|\int_{x}^{t}\left(1+|u-x| \delta^{-1}\right) \omega\left(f^{\prime}, I_{1}, \delta\right) d u\right| \tag{17}
\end{align*}
$$

Combining (15) and (16) we can deduce for all t in I,

$$
|f(t)-f(x)| \leqslant\left(1+(t-x)^{2} \delta^{-2}\right) \omega(\delta)+K\left(f, I_{2}, \eta\right)\left[h_{a}(x, t)+h_{b}(x, t)\right],
$$

from which (10) follows easily, by applying L_{n} and then letting $\delta \downarrow c \gamma_{n}(x)$ (c.f. Mond [9]). The estimate in (11) and (12) is derived in the same way, using (17) instead of (16) and using the fact that $L_{n}(|t-x| ; x) \leqslant$ $\gamma_{n}(x)^{1 / 2}\left(L_{n}(1 ; x)\right)^{1 / 2}$.

For the proof of (13) and (14) we shall use the technique in [5]. Let f be in $C\left(I_{1}, g_{a}, g_{b}\right)$ and continuously differentiable on I_{1}. We define

$$
\hat{f}^{\prime}(x)= \begin{cases}f^{\prime}(a) & \text { for } x<a_{1}, \\ f^{\prime}(x) & \text { for } a_{1} \leqslant x \leqslant b_{1} \\ f^{\prime}(b) & \text { for } x>b_{1}\end{cases}
$$

and

$$
k(x)=(2 c)^{-1} \int_{-c}^{c} \hat{f}^{\prime}(x+s) d s \quad \text { for } x \in I_{1}=\left[a_{1}, b_{1}\right] .
$$

Then $k \in C^{1}\left(I_{1}\right)$ and we have for $x \in I_{1}$ that $|k(x)| \leqslant\left\|f^{\prime}\right\|_{\Lambda_{1}}$ and

$$
\begin{aligned}
\left|k^{\prime}(x)\right| & =\left|(2 c)^{-1}\left[\hat{f}^{\prime}(x+c)-\hat{f}^{\prime}(x-c)\right]\right| \\
& \leqslant(2 c)^{-1}\left[\left|\hat{f}^{\prime}(x+c)-f^{\prime}(x)\right|+\left|f^{\prime}(x)-\hat{f}^{\prime}(x-c)\right|\right] \\
& \leqslant c^{-1} \omega\left(f^{\prime}, I_{1}, c\right) .
\end{aligned}
$$

There exists a $\theta_{x} \in[-c, c]$ such that $k(x)=\hat{f}^{\prime}\left(x+\theta_{x}\right)$ and so

$$
\left|\left(f^{\prime}-k\right)(x)\right|=\left|f^{\prime}(x)-\hat{f}^{\prime}\left(x+\theta_{x}\right)\right| \leqslant \omega\left(f^{\prime}, I_{1}, c\right)
$$

Thus, if we choose a g in $C^{2}\left(I_{1}\right)$ such that $g^{\prime}=k$, then

$$
\left\|g^{\prime}\right\|_{I_{1}} \leqslant\left\|f^{\prime}\right\|_{I_{1}},\left\|g^{\prime \prime}\right\|_{I_{1}} \leqslant c^{-1} \omega\left(f^{\prime}, I_{1}, c\right)
$$

and

$$
\left\|(f-g)^{\prime}\right\|_{I_{1}} \leqslant \omega\left(f^{\prime}, I_{1}, c\right)
$$

Now for $x \in I_{2}$ and $t \in\left[a_{2}-\eta, b_{2}+\eta\right]$,

$$
\begin{aligned}
|f(t)-f(x)| & \leqslant|(f-g)(t)-(f-g)(x)|+|g(t)-g(x)| \\
& =\left|(f-g)^{\prime}(u)(t-x)\right|+\left|g^{\prime}(x)(t-x)+\frac{g^{\prime \prime}(v)}{2}(t-x)^{2}\right| \\
& \leqslant\left[\left\|(f-g)^{\prime}\right\|+\left\|g^{\prime}\right\|\right]|t-x|+\frac{1}{2}\left\|g^{\prime \prime}\right\|(t-x)^{2} \\
& \leqslant\left[\omega\left(f^{\prime}, I_{1}, c\right)+\left\|f^{\prime}\right\|\right]|t-x|+\frac{1}{2 c} \omega\left(f^{\prime}, I_{1}, c\right)(t-x)^{2}
\end{aligned}
$$

Combining this and (15) we obtain that for $x \in I_{2}$ and $t \in I$

$$
\begin{aligned}
|f(t)-f(x)| \leqslant & K\left(f, I_{2}, \eta\right)\left[h_{a}(x, t)+h_{b}(x, t)\right]+\left[\omega\left(f^{\prime}, I_{1}, c\right)+\left\|f^{\prime}\right\|\right]|t-x| \\
& +\frac{1}{2 c} \omega\left(f^{\prime}, I_{1}, c\right)(t-x)^{2}
\end{aligned}
$$

from which (13) and (14) follow immediately by applying L_{n}.
Remark. Under the assumption that $L_{n} f \rightarrow f$ for $f(t)=1, t, t^{2}$, Walk [18] and Müller and Walk [10] have considered the approximation of a function f which satisfies sup $L_{n}\left(|f|^{p} ; x\right)<\infty, x \in(a, b)$ for some $p>1$. One might expect to derive Theorems 2.1 and 2.2 from their theorems. This turns out to be not possible. Even if one assumes that $L_{n} f \rightarrow f$ for $f(t)=t^{2}$, $t \in R$, in addition to $1, t$, and $g(t)$, in order to use the theorems of $[10,18]$ to assert that $L_{n} f \rightarrow f$ for a function f in $C\left(I_{l}, g, g\right)$ (as one can use Theorem 2.1 to do so), according to [18, Remark 1(b)], one has to find a $p>1$ such that

$$
|f(t)|^{p} \leqslant g(t) \quad(t \in R)
$$

But this is not always possible. For instance, if $g(t)=\exp \left(t^{2}+|t|\right)$ and
$f(t)=\exp \left(t^{2}\right)$, then $f(t)=O(g(t))(|t| \rightarrow \infty)\left(\right.$ that is $\left.f \in C\left(I_{1}, g, g\right)\right)$ but there is no $p>1$ such that

$$
|f(t)|^{p} \leqslant g(t)
$$

for $t \in R$.

3. Examples

In this section we shall modify some well-known linear positive operators so as to approximate unbounded functions on, e.g., $(0,1)$ or $(0, \infty)$. The results in Section 2 will be applied to yield some estimates of convergence rate for these operators.

Example 1. Let $I=(0,1)$ and $I_{1}=\left[a_{1}, b_{1}\right] \subset I$. The operators B_{n} : $C\left(I_{1}, 1 / t, 1 /(1-t)\right) \rightarrow C\left(I_{1}\right)$ defined by

$$
B_{n}(f(t) ; x)=\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k} f\left(\frac{k+1}{n+2}\right)
$$

are the Bernstein operators with $f(k / n)$ replaced by $f((k+1) /(n+2))$. This modification enables B_{n} to operate on functions which are unbounded near 0 and 1. Straightforward calculations give

$$
\begin{gathered}
B_{n}(1 ; x)=1, \quad B_{n}(t ; x)=x+\frac{1-2 x}{n+2}, \\
B_{n}\left(t^{2} ; x\right)=x^{2}+\left[-(5 n+4) x^{2}+3 n x+1\right](n+2)^{-2}, \\
B_{n}\left(\frac{1}{t} ; x\right)=\frac{1}{x}+\frac{1}{n+1} \frac{1}{x}-\frac{n+2}{n+1}(1-x)^{n+1} \frac{1}{x}, \\
B_{n}\left(\frac{1}{1-t} ; x\right)=\frac{1}{1-x}+\frac{1}{n+1} \frac{1}{1-x}-\frac{n+2}{n+1} \frac{1}{1-x} x^{n+1} .
\end{gathered}
$$

Hence, by (3), (4), and (5), we have for $x \in I_{1}$

$$
\begin{aligned}
\alpha_{n}^{2}(x) & =\frac{1}{n+1} \frac{1}{x}-\frac{n+2}{n+1} \frac{1}{x}(1-x)^{n+1}+x^{-2} \frac{1-2 x}{n+2} \\
& \leqslant \frac{1}{n+2}\left(x^{-2}+x^{-1}\right)-x^{-1}(1-x)^{n+1} \leqslant \frac{2}{n} / a_{1}^{2}-\left(1-b_{1}\right)^{n+1} / b_{1} \\
\beta_{n}^{2}(x) & \leqslant \frac{1}{n+2}\left[(1-x)^{-2}+(1-x)^{-1}\right]-x^{n+1}(1-x)^{-1} \\
& \leqslant 2\left(1-b_{1}\right)^{-2} / n-a_{1}^{n+1} /\left(1-a_{1}\right)
\end{aligned}
$$

and

$$
\gamma_{n}^{2}(x)=\left[-(5 n+4) x^{2}+3 n x+1\right] /(n+2)^{2}-2 x \frac{1-2 x}{n+2} \leqslant \frac{1}{4 n}
$$

Therefore, for $f \in C\left(I_{1}, 1 / t, 1 /(1-t)\right)$ we have

$$
\begin{aligned}
&\left\|B_{n}(f(t) ; x)-f(x)\right\|_{I_{1}} \rightarrow 0 \quad \text { as } n \rightarrow \infty \\
&\left|B_{n}(f ; x)-f(x)\right| \leqslant\left(1+c^{-2}\right) \omega\left(f, I_{1}, c\left(\frac{1}{4 n}\right)^{1 / 2}\right)+K_{1}\left(f, a_{1}, b_{1}, \eta\right) n^{-1} \\
&\left|B_{n}(f ; x)-f(x)\right| \leqslant\left\{\left|f^{\prime}(x)\right|+\left(1+\frac{1}{2 c}\right) \omega\left(f^{\prime}, I_{1}, c\left(\frac{1}{4 n}\right)^{1 / 2}\right)\right\}\left(\frac{1}{4 n}\right)^{1 / 2} \\
&+K_{1}\left(f, a_{1}, b_{1}, \eta\right) n^{-1}
\end{aligned}
$$

and

$$
\begin{aligned}
\left|B_{n}(f ; x)-f(x)\right| \leqslant & \left\{\left\|f^{\prime}\right\|_{I_{1}}+\omega\left(f^{\prime}, I_{1}, c\right)\left[1+\frac{1}{2 c}\left(\frac{1}{4 n}\right)^{1 / 2}\right]\right\}\left(\frac{1}{4 n}\right)^{1 / 2} \\
& +K_{1}\left(f, a_{1}, b_{1}, \eta\right) n^{-1}
\end{aligned}
$$

for $x \in I_{2}=\left[a_{1}+\eta, b_{1}-\eta\right], \eta>0$.
Example 2. The operators $M_{n}: C\left(I_{1}, 1 / t, 1 / 1-t\right) \rightarrow C\left(I_{1}\right)$ defined by

$$
M_{n}(f(t) ; x)=(1-x)^{n+1} \sum_{k=0}^{\infty}\binom{n+k}{k} x^{k} f\left(\frac{k+1}{n+k+1}\right)
$$

are the Meyer-König and Zeller operators with $f(k /(n+k))$ replaced by $f((k+1) /(n+k+1))$. We have $M_{n}\left(t^{i} ; x\right)=x^{i}+\lambda_{n i}(x)(i=0,1,2)$ with $\lambda_{n 0}(x)=0$,

$$
\begin{aligned}
0<\lambda_{n 1}(x)= & (1-x)^{n+1} \sum_{k=0}^{\infty}\binom{n+k}{k} x^{k}\left(\frac{k+1}{n+k+1}-\frac{k}{n+k}\right) \\
\leqslant & (1-x)^{n+1} \sum_{k=0}^{\infty}\binom{n+k}{k} x^{k} \frac{1}{n}=\frac{1}{n} \\
0<\lambda_{n 2}(x)= & (1-x)^{n+1} \sum_{k=0}^{\infty}\binom{n+k}{k} x^{k} \\
& \times\left[\left(\frac{k+1}{n+k+1}\right)^{2}-\frac{k}{n+k} \frac{k-1}{n+k-1}\right]<\frac{3}{n}
\end{aligned}
$$

$$
\begin{aligned}
M_{n}\left(\frac{1}{t} ; x\right) & =\frac{1}{x}(1-x)^{n+1} \sum_{k=0}^{\infty}\binom{n+k+1}{k+1} x^{k+1} \\
& =\frac{1}{x}\left(1-(1-x)^{n+1}\right)=\frac{1}{x}-(1-x)^{n+1} x^{-1},
\end{aligned}
$$

and

$$
\begin{aligned}
M_{n}\left(\frac{1}{1-t} ; x\right) & =\frac{n+1}{n}(1-x)^{n+1} \sum_{k=0}^{\infty}\binom{n+k+1}{k} x^{k} \\
& =\frac{n+1}{n} \frac{1}{1-x}=\frac{1}{1-x}+\frac{1}{n(1-x)} .
\end{aligned}
$$

It follows from (3), (4), and (5) that for $x \in I_{1}$

$$
\begin{aligned}
\alpha_{n}^{2}(x) & \leqslant-(1-x)^{n+1} x^{-1}+n^{-1} x^{-2} \leqslant a_{1}^{-2} n^{-1}-\left(1-b_{1}\right)^{n+1} / b_{1}, \\
\beta_{n}^{2}(x) & =1 /(1-x) n-\lambda_{n 1}(x)(1-x)^{-2} \leqslant(2-x) /(1-x)^{2} n . \\
& \leqslant 2\left(1-b_{1}\right)^{-2} n^{-1}, \\
\gamma_{n}^{2}(x) & =\lambda_{n 2}(x)-2 x \lambda_{n 1}(x)<\frac{3}{n}+\frac{2 x}{n}<\frac{5}{n} .
\end{aligned}
$$

Therefore, for f in $C\left(I_{1}, 1 / t, 1 /(1-t)\right)$ we have

$$
\begin{aligned}
&\left\|M_{n}(f(t) ; x)-f(x)\right\|_{I_{1}} \rightarrow 0 \quad \text { as } n \rightarrow \infty, \\
&\left|M_{n}(f ; x)-f(x)\right| \leqslant\left(1+c^{-2}\right) \omega\left(f, I_{1}, c(5 / n)^{1 / 2}\right)+K_{1}\left(f, a_{1}, b_{1}, \eta\right) n^{-1}, \\
&\left|M_{n}(f ; x)-f(x)\right| \leqslant\left\{\left|f^{\prime}(x)\right|+\left(1+\frac{1}{2 c}\right) \omega\left(f^{\prime}, I_{1}, c(5 / n)^{1 / 2}\right)\right\}(5 / n)^{1 / 2} \\
&+K_{1}\left(f, a_{1}, b_{1}, \eta\right) n^{-1},
\end{aligned}
$$

and

$$
\begin{aligned}
\left|M_{n}(f ; x)-f(x)\right| \leqslant & \left\{\left\|f^{\prime}\right\|_{I_{1}}+\left(1+(5 / n)^{1 / 2}(2 c)^{-1} \omega\left(f^{\prime}, I_{1}, c\right)\right\}(5 / n)^{1 / 2}\right. \\
& +K_{1}\left(f, a_{1}, b_{1}, \eta\right) n^{-1}
\end{aligned}
$$

for $x \in I_{2}=\left[a_{1}+\eta, b_{1}-\eta\right], \eta>0$.
Example 3. Let $I=(0, \infty), I_{1}=\left[a_{1}, b_{1}\right] \subset I$. We consider the operator $B_{n}: C\left(I_{1}, 1 / t, e^{w l}\right) \rightarrow C\left(I_{1}\right)$ defined by

$$
B_{n}(f(t) ; x)=\sum_{k=0}^{\infty}\binom{-n}{k}(-x)^{k}(1+x)^{-n-k} f\left(\frac{k+1}{n}\right) .
$$

These are the special Baskakov operators with $f(k / n)$ replaced by $f((k+1) / n)$. For these operators we have

$$
\begin{gathered}
B_{n}(1 ; x)=1, \quad B_{n}(t ; x)=x+\frac{1}{n}, \\
B_{n}\left(t^{2} ; x\right)=x^{2}+\left[x^{2} / n+3 x / n+1 / n^{2}\right], \\
B_{n}\left(\frac{1}{t} ; x\right)=\frac{n}{n-1} \frac{1}{x}\left[B_{n-1}(1 ; x)-(1+x)^{-n+1}\right] \\
=\frac{1}{x}+\frac{1}{n-1} \frac{1}{x}-\frac{n}{n-1} \frac{1}{x}(1+x)^{-n+1}, \quad n \geqslant 2, \\
B_{n}\left(e^{w t} ; x\right)=e^{w / n} \sum_{k=0}^{\infty}\binom{-n}{k}\left(-x e^{w / n}\right)^{k}(1+x)^{-n-k} \\
=e^{w / n}\left[1+x-x e^{w / n}\right]^{-n}=e^{w x}+\mu_{n}(x),
\end{gathered}
$$

where $\mu_{n}(x)=e^{w / n}\left[1+x-x e^{w / n}\right]^{-n}-e^{w x}$ converges to 0 uniformly on [$0, \theta$] for any $\theta>0$ (see [12, Theorem 3.6]). Now substitutions into (3), (4), and (5) yield

$$
\begin{aligned}
& \alpha_{n}^{2}(x)=\frac{1}{n-1} \frac{1}{x}-\frac{n}{n-1} \frac{1}{x}(1+x)^{-n+1}+x^{-2} \frac{1}{n} \\
& \beta_{n}^{2}(x)=e^{w / n}\left[1+x-x e^{w / n}\right]^{-n}-e^{w x}-w e^{w x} \frac{1}{n} \\
& \gamma_{n}^{2}(x)=\frac{x^{2}}{n}+\frac{3 x}{n}+1 / n^{2}-\frac{2 x}{n}=\frac{x^{2}}{n}+\frac{x}{n}+n^{-2} \leqslant\left(b_{1}+1\right)^{2} / n
\end{aligned}
$$

for $x \in I_{1}$. It is clear that these three sequences converge to 0 uniformly for x in I_{1}. Hence Theorems 2.1 and 2.2 imply that if f belongs to $C\left(I_{1}, 1 / t\right.$, $e^{w t}$), then we have

$$
\begin{aligned}
\| & B_{n}(f(t) ; x)-f(x) \|_{I_{1}} \rightarrow 0 \quad \text { as } n \rightarrow \infty \\
\left|B_{n}(f ; x)-f(x)\right| \leqslant & \left(1+c^{-2}\right) \omega\left(f, I_{1}, c\left(b_{1}+1\right) n^{-1 / 2}\right) \\
& +K\left(f, I_{2}, \eta\right)\left(\alpha_{n}^{2}(x)+\beta_{n}^{2}(x)\right) \\
\left|B_{n}(f ; x)-f(x)\right| \leqslant & \left\{\left|f^{\prime}(x)\right|+\left(1+\frac{1}{2 c}\right) \omega\left(f^{\prime}, I_{1}, c\left(b_{1}+1\right) n^{-1 / 2}\right\}\right. \\
& \times\left(b_{1}+1\right) n^{-1 / 2}+K\left(f, I_{2}, \eta\right)\left(\alpha_{n}^{2}(x)+\beta_{n}^{2}(x)\right)
\end{aligned}
$$

$$
\begin{aligned}
\left|B_{n}(f ; x)-f(x)\right| \leqslant & \left\{\left\|f^{\prime}\right\|_{I_{1}}+\left[1+\frac{1}{2 c}\left(b_{1}+1\right) n^{-1 / 2}\right] \omega\left(f^{\prime}, I_{1}, c\right)\right\} \\
& \times\left(b_{1}+1\right) n^{-1 / 2}+K\left(f, I_{2}, \eta\right)\left(\alpha_{n}^{2}(x)+\beta_{n}^{2}(x)\right)
\end{aligned}
$$

for $x \in I_{2}=\left[a_{1}+\eta, b_{1}-\eta\right], \eta>0$.

Example 4. Let $I=(0, \infty)$ and $I_{1}=\left[a_{1}, b_{1}\right]$, and let $S_{n}: C\left(I_{1}, 1 / t\right.$, $\left.e^{w t}\right) \rightarrow C\left(I_{1}\right)$ be defined by

$$
S_{n}(f(t) ; x)=e^{-n x} \sum_{k=0}^{\infty} \frac{(n x)^{k}}{k!} f\left(\frac{k+1}{n}\right)
$$

These are the Mirakjan-Szász operators with $f(k / n)$ replaced by $f((k+1) / n)$. We have $S_{n}(1 ; x)=1, \quad S_{n}(t ; x)=x+n^{-1}, \quad S_{n}\left(t^{2} ; x\right)=$ $x^{2}+3 x / n+n^{-2}, \quad S_{n}(1 / t ; x)=(1 / x) e^{-n x} \sum_{k=0}^{\infty}\left((n x)^{k+1} /(k+1)!\right)=1 / x-$ $(1 / x) e^{-n x}, \quad$ and $\quad S_{n}\left(e^{w z} ; x\right)=\exp \left[n x\left(e^{w / n}-1\right)\right] e^{w / n}=e^{w x}+\mu_{n}(x)$, where $\mu_{n}(x)$ converges to 0 uniformly for x in I_{1} (cf. [6]). It follows that for f in $C\left(I_{1}, 1 / t, e^{w t}\right)$

$$
\left\|S_{n}(f(t) ; x)-f(x)\right\|_{\Lambda_{1}} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

Moreover, (10), (11), (12), (13), and (14) will hold with

$$
\begin{aligned}
& \alpha_{n}^{2}(x)=-\frac{1}{x} e^{-n x}+x^{-2} n^{-1} \leqslant a_{1}^{-2} n^{-1}-b_{1}^{-1} e^{-n b_{1}}, \\
& \beta_{n}^{2}(x)=\exp \left[n x\left(e^{w / n}-1\right)+w / n\right]-e^{w x}-w e^{w x} n^{-1}, \\
& \gamma_{n}^{2}(x)=3 x n^{-1}+n^{-2}-2 x n^{-1}<\left(b_{1}+1\right) n^{-1} .
\end{aligned}
$$

Example 5. For $I_{1}=\left[a_{1}, b_{1}\right] \subset I=(0, \infty)$ and for any $k=1,2, \ldots$, the Post-Widder operators $P_{n}: C\left(I_{1}, t^{-k}, e^{w t}\right) \rightarrow C\left(I_{1}\right)$ are defined by

$$
P_{n}(f(t) ; x)=\frac{(n / x)^{n}}{(n-1)!} \int_{0}^{\infty} e^{-n t / x} t^{n-1} f(t) d t
$$

On substituting $s=n / x$ into the identity

$$
\int_{0}^{\infty} e^{-s t} t^{n+i-1} e^{w t} d t=(n+i-1)!(s-w)^{-n-i} \quad(n+i \geqslant 1, s>w)
$$

we derive that $P_{n}\left(t^{i} e^{w t} ; x\right)=[(n+i-1)!/(n-1)!](n / x)^{n}(n / x-w)^{-n-i}$
holds when $n+i \geqslant 1$ and $n / x>w$. Thus, taking suitable values of i and w we obtain the following identities:

$$
\begin{gathered}
P_{n}(1 ; x)=1, \quad P_{n}(t ; x)=x, \quad P_{n}\left(t^{2} ; x\right)=x^{2}+x^{2} / n, \\
P_{n}\left(t^{-k} ; x\right)=x^{-k}+x^{-k}\left[\frac{n^{k}}{(n-1)(n-2) \cdots(n-k)}-1\right], \quad n \geqslant k+1,
\end{gathered}
$$

and

$$
P_{n}\left(e^{w t} ; x\right)=(1-w x / n)^{-n}=e^{w x}+(1-w x / n)^{-n}-e^{w x} .
$$

Since the last two sequences converge uniformly on I_{1} to x^{-k} and $e^{w x}$, respectively, Theorem 2.1 implies

$$
\left\|P_{n}(f(t) ; x)-f(x)\right\|_{I_{1}} \rightarrow 0
$$

for all f in $C\left(I_{1}, t^{-k}, e^{w t}\right)(k, w>0)$. Moreover, (10), (11), (12), (13), and (14) will hold with

$$
\begin{aligned}
& \alpha_{n}^{2}(x)=x^{-k}\left[\frac{n^{k}}{(n-1)(n-2) \cdots(n-k)}-1\right] \\
& \beta_{n}^{2}(x)=\left(1-\frac{w x}{n}\right)^{-n}-e^{w x} \\
& \gamma_{n}^{2}(x)=\frac{x^{2}}{n} \leqslant \frac{b_{1}^{2}}{n}
\end{aligned}
$$

Example 6. For $I_{1}=\left[a_{1}, b_{1}\right] \subset I=(0, \infty)$ and for $w>0, k=1,2, \ldots$, the Gamma operators $G_{n}: C\left(I_{1}, e^{w / t}, t^{k}\right) \rightarrow C\left(I_{1}\right)$ are defined by

$$
G_{n}(f(t) ; x)=\frac{x^{n+1}}{n!} \int_{0}^{\infty} e^{-x t} t^{n} f\left(\frac{n+1}{t}\right) d t .
$$

It is known that $G_{n} 1=1, G_{n} t=x+x / n$, and $G_{n} t^{2}=x^{2}+((3 n+1) /$ $n(n-1)) x^{2}$. Also we have

$$
\begin{aligned}
G_{n}\left(e^{w / t} ; x\right) & =\frac{x^{n+1}}{n!} \int_{0}^{\infty} \exp \left[-\left(x-\frac{w}{n+1}\right) t\right] t^{n} d t \\
& =x^{n+1}\left(x-\frac{w}{n+1}\right)^{-n-1}=\left(1-\frac{w}{(n+1) x}\right)^{-n-1}
\end{aligned}
$$

and

$$
G_{n}\left(t^{k} ; x\right)=x^{k} \frac{(n+1)^{k}}{n(n-1) \cdots(n-k+1)} .
$$

It can easily be shown that $G_{n} t, G_{n} e^{\omega / 2}$, and $G_{n} t^{k}$ converge uniformly on I_{1} to $x, e^{w / x}$, and x^{k}, respectively. Hence we can deduce from Theorem 2.1 that for all f in $\left(I_{1}, e^{w / t}, t^{k}\right)$

$$
\left\|G_{n}(f(t) ; x)-f(x)\right\|_{L_{1}} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

In addition, (10), (11), (12), (13), and (14) will hold with

$$
\begin{aligned}
& \alpha_{n}^{2}(x)=-e^{w / t}+\left(1-\frac{w}{(n+1) x}\right)^{-n-1}+\frac{w}{n x} e^{w / x} \\
& \beta_{n}^{2}(x)=x^{k}\left[\frac{(n+1)^{k}}{n(n-1) \cdots(n-k+1)}-1\right]-k n^{-1} x^{k} \\
& \gamma_{n}^{2}(x)=\frac{3 n+1}{n(n-1)} x^{2}-\frac{2 x^{2}}{n}
\end{aligned}
$$

Acknowledgments

The authors thank the referees for their helpful suggestions.

References

1. H. Bohman, On approximation of continuous and analytic functions, Ark. Mat. 2 (1952), 43-56.
2. R. A. DeVore, The approximation of continuous functions by positive linear operators, in "Lecture Notes in Mathematics," Vol. 293, Springer-Verlag, New York/Berlin, 1972.
3. Z. Ditzian, Convergence of sequences of linear positive operators: Remarks and applications, J. Approx. Theory 14 (1975), 296-301.
4. S. Eisenberg and B. Wood, On the order of approximation of unbounded functions by positive linear operators, SIAM J. Numer. Anal. 9 (1972), 266-276.
5. H. H. Gonska, On approximation of continuously differentiable functions by positive linear operators, Bull. Austral. Math. Soc. 27 (1983), 73-81.
6. M. E. H. Ismall and C. P. May, On a family of approximation operators, J. Math. Anal. Appl. 63 (1978), 446-462.
7. P. P. Korovkin, "Linear Operators and Approximation Theory," Hindustan Publishing Corp., Delhi, 1960 (Translated from the Russian edition, 1959.).
8. R. G. Mamedov, Asymptotic approximation of differentiable functions with linear positive operators, Dokl. Akad. Nauk SSSR 128 (1959), 471-474. [Russian]
9. B. Mond, On the degree of approximation by linear positive operators, J. Approx. Theory 18 (1976), 304-306.
10. M. W. Müller and H. Walk, Konvergenz- und Güteaussagen für die Approximation durch Folgen linearer positiver Operatoren, in "Constructive Function Theory (Proceedings, Conf. Golden Sands (Varna), May 19-25, 1970)," pp. 221-233, Bulgarian Academy of Sciences, Sofia, 1972.
11. F. Schurer, "On Linear Positive Operators in Approximation Theory," Dissertation, Delft, 1965.
12. S.-Y. Shaw, Approximation of unbounded functions and applications to representations of semigroups, J. Approx. Theory 28 (1980), 238-259.
13. S.-Y. Shaw, Some exponential formulas for m-parameter semigroups, Bull. Inst. Math. Acad. Sinica 9 (1981), 221-228.
14. S.-Y. Shaw, C.-S. Lee, and W.-L. Chiou, Representation formulas for cosine and sine functions of operators II, Aequationes Math. 31 (1986), 64-75.
15. O. Shisha and B. Mond, The degree of convergence of sequences of linear positive operators, Proc. Nat. Acad. Sci. U.S.A. 60 (1968), 1196-1200.
16. P. C. Siккema, On some linear positive operators, Indag. Math. 32 (1970), 327-337.
17. J. J. Swetits and B. Wood, Unbounded functions and positive linear operators, J. Approx. Theory 34 (1982), 325-334.
18. H. Walk, Approximation durch Folgen linearer positiver Operatoren, Arch. Math. 20 (1969), 398-404.
19. S. P. Singh and O. P. Varshney, A note on convergence of linear positive operators, J. Approx. Theory 39 (1983), 386-388.
